一.查看数据 1.查看DataFrame前xx行或后xx行a=DataFrame(data);a.head(6)表示显示前6行数据,若head()中不带参数则会显示全部数据.a.tail(6)表示显示后6行数据,若tail()中不带参数则也会显示全部数据. 2.查看DataFrame的index,columns以及valuesa.index ; a.columns ; a.values 即可 3.describe()函数对于数据的快速统计汇总a.describe()对每一列数据进行统计,包括计数…
python requests抓取NBA球员数据,pandas进行数据分析,echarts进行可视化 (前言) 感觉要总结总结了,希望这次能写个系列文章分享分享心得,和大神们交流交流,提升提升. 因为半桶子水的水平,一直在想写什么,为什么写,怎么写. 直到现在找到了一种好的办法: 1.写什么 自己手上掌握的,工作中经常用到的,从数据源 到 最后可视化 所有一套流程. 2.为什么写 因为很长一段时间没有进行总结和梳理了,总感觉很多东西很零散,另一方面,写写笔记也是对那些东西的一次巩固. 3.怎么写…
在这个用 Python 和 Pandas 实现数据分析的教程中, 我们将明确一些 Pandas 基础知识. 加载到 Pandas Dataframe 的数据形式可以很多, 但是通常需要能形成行和列的数据集. 所以可以是如下的 dictionary 的形式: web_stats = {'Day':[1,2,3,4,5,6], 'Visitors':[43,34,65,56,29,76], 'Bounce Rate':[65,67,78,65,45,52]} 我们可以通过如下方式把这个 dictio…
基于 Python 和 Pandas 的数据分析(1) Pandas 是 Python 的一个模块(module), 我们将用 Python 完成接下来的数据分析的学习. Pandas 模块是一个高性能,高效率和高水平的数据分析库. 从本质上讲,它非常像操作电子表格的无头版本,如Excel. 我们所使用的大部分的数据集都可以被转换成 dataframes(数据框架). 你可能对这个术语比较熟悉了, 它被广泛地用于很多语言. 但是如果你不熟悉, 可以看下我的解释: 一个 dataframe 就很像…
Python 数据分析:让你像写 Sql 语句一样,使用 Pandas 做数据分析 一.加载数据 import pandas as pd import numpy as np url = ('https://raw.github.com/pandas-dev/pandas/master/pandas/tests/data/tips.csv') tips = pd.read_csv(url) output = tips.head() Output: total_bill tip sex smoke…
文章目录 很多人学习python,不知道从何学起.很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手.很多已经做案例的人,却不知道如何去学习更加高深的知识.那么针对这三类人,我给大家提供一个好的学习平台,免费领取视频教程,电子书籍,以及课程的源代码!QQ群:101677771 一.Pandas的使用 1.Pandas介绍 2.Pandas基本操作 Series的操作 创建DataFrame 常见列操作 常见行操作 DateFrame的基本操作 时间操作 3.Pandas进行数据…
这一节我想对使用 Python 和 Pandas 的数据分析做一些扩展. 假设我们是亿万富翁, 我们会想要多元化地进行投资, 比如股票, 分红, 金融市场等, 那么现在我们要聚焦房地产市场, 做一些这方面的调研. 首先, 决定房价的因素有哪些呢? 经济, 利率和人口特征.这些是影响放假的主要因素. 当然还有很多细节, 比如房子的排水系统, 屋顶, 地板等等. 但是, 首先我们还是从宏观的角度来做个大体的分析. 第一步, 就是要收集数据. Quandl 仍然是一个很好的起点, 但是这次我们要自己手…
终于盼来了不是前言部分的前言,相当于杂谈,算得上闲扯,我觉得很多东西都是在闲扯中感悟的,比如需求这东西,一个人只有跟自己沟通好了,总结出某些东西了,才能更好的和别人去聊,去说. 今天这篇写的是明白需求,其实更多的是想和大家聊天,只有把这个聊开了,后面的东西做起来才有意义,才有价值,在聊天中,思考中发现价值(化身为话唠了?) 有时候你自以为某些东西很重要,其实那只是站在自己的角度觉得很重要,更需要的是站在别人,站在市场的角度去思考这个问题,特么的到底重不重要. 需求我觉得可以分为两类:自己主动去做…
这一节, 我们要讨论 Pandas 的输入与输出, 并且应用在现实的实际例子中. 为了得到大量的数据, 向大家推荐一个网站 Quandl. Quandl 有很多免费和付费的资源. 这个网站最大的优势在于数据的规范化, 集中性以及提取数据的方式都是一样的. 如果你获取数据的时候, 选择用 Python, 那么数据会自动转成 dataframe. 但是, 我们这节课的目的是理解 Pandas 的输入与输出, 所以我们还是手动下载一个 CSV 文件. 举个例子, 我们想要买卖德克萨斯州的一处房产. 那…
一.介绍 pandas是一个强大的Python数据分析的工具包,是基于NumPy构建的. 1.主要功能 具备对其功能的数据结构DataFrame.Series 集成时间序列功能 提供丰富的数学运算和操作 灵活处理缺失数据 2.安装方法 pip install pandas 3.引用方法 import pandas as pd 二.Series Series是一种类似于一位数组的对象,由一组数据和一组与之相关的数据标签(索引)组成. 获取值数组和索引数组:values属性和index属性Serie…