RMQ算法讲解】的更多相关文章

RMQ算法 引入: 例1.题目描述 输入N个数和M次询问,每次询问一个区间[L,R],求第L个数到R个数之间的最大值.   第一种方法:大暴力之术. 但是……时间复杂度最坏会达到 $O(NM)$,一半左右的点绝对爆T. 所以,引入了————RMQ!   RMQ:Range Maximum(Minimum) Query的缩写,顾名思义是用来求某个区间内的最大值或最小值,通常用在需要多次询问一些区间的最值的问题中.   RMQ的原理是 动态规划 用A[1..N]表示一组数,F[I,J]表示从A[I]…
 概述: RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间的最小/大值.对于一次查询,可以暴力地O(n),但是当查询次数很多的时候,这样的暴力就无法进行了.这时我们可以通过RMQ算法来解决这个问题. RMQ(ST):(关于学习RMQ的博客:框架即讲解比较详细 , 具体代码比较好) ST(Sparse Table)算法是一个非常有名的在线处理RMQ…
大家好,我是人见人爱,花见花开的小花.哈哈~~! 在统计和数据挖掘中,亲和传播(AP)是基于数据点之间"消息传递"概念的聚类算法.与诸如k-means或k-medoids的聚类算法不同,亲和传播不需要在运行算法之前确定或估计聚类的数量. 类似于k-medoids,亲和力传播算法发现"样本",输入集合的成员,输出聚类结果. 一 算法描述 2.1基本介绍 我们让(x1,-xn)作为一系列的数据点,然后用矩阵S代表各个数据点之间的相似度,一般相似度的判断有欧氏距离,马氏距…
BF.KMP.BM.Sunday算法讲解 字串的定位操作通常称作串的模式匹配,是各种串处理系统中最重要的操作之一. 事实上也就是从一个母串中查找一模板串,判定是否存在. 现给出四种匹配算法包括BF(即二维循环匹配算法).KMP.BM.Sunday算法,着重讲KMP算法,其他算法尽量详细讲解,有兴趣的读者可自行查找其它相关资料了解其它算法,当然本文也会推荐一些网址供读者参考. 事实上本博文也是作者阅读了其它博文,然后根据自己的在理解过程中遇到的问题加以阐述,总结而来的,尤其是多次阅读了July的博…
1. 概述 RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间的最小/大值.这两个问题是在实际应用中经常遇到的问题,下面介绍一下解决这两种问题的比较高效的算法.当然,该问题也可以用线段树(也叫区间树)解决,算法复杂度为:O(N)~O(logN),这里我们暂不介绍. 2.RMQ算法 对于该问题,最容易想到的解决方案是遍历,复杂度是O(n).但当数据量…
tarjan算法讲解.   全网最详细tarjan算法讲解,我不敢说别的.反正其他tarjan算法讲解,我看了半天才看懂.我写的这个,读完一遍,发现原来tarjan这么简单! tarjan算法,一个关于 图的联通性的神奇算法.基于DFS(迪法师)算法,深度优先搜索一张有向图.!注意!是有向图.根据树,堆栈,打标记等种种神(che)奇(dan)方法来完成剖析一个图的工作.而图的联通性,就是任督二脉通不通..的问题.了解tarjan算法之前你需要知道:强连通,强连通图,强连通分量,解答树(解答树只是…
1.SVM讲解 新闻分类案例 SVM是一个很复杂的算法,不是一篇博文就能够讲完的,所以此篇的定位是初学者能够接受的程度,并且讲的都是SVM的一种思想,通过此篇能够使读着会使用SVM就行,具体SVM的推导过程有一篇博文是讲得非常细的,具体链接我放到最后面,供大家参考. 1.1支持向量机(SVM)的由来 首先我们先来看一个3维的平面方程:Ax+By+Cz+D=0 这就是我们中学所学的,从这个方程我们可以推导出二维空间的一条直线:Ax+By+D=0 那么,依次类推,更高维的空间叫做一个超平面: x代表…
RMQ算法,是一个快速求区间最值的离线算法,预处理时间复杂度O(n*log(n)),查询O(1),所以是一个很快速的算法. 当然这个问题用线段树同样能够解决,算法复杂度为:O(N)~O(logN) . RMQ: RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A, 回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间的最小/大值. 分析: 对于该问题,最容易想到的解决方案是遍历,复杂度是O(n).但当…
算法原理 由于传统的KMeans算法的聚类结果易受到初始聚类中心点选择的影响,因此在传统的KMeans算法的基础上进行算法改进,对初始中心点选取比较严格,各中心点的距离较远,这就避免了初始聚类中心会选到一个类上,一定程度上克服了算法陷入局部最优状态.二分KMeans(Bisecting KMeans)算法的主要思想是:首先将所有点作为一个簇,然后将该簇一分为二.之后选择能最大限度降低聚类代价函数(也就是误差平方和)的簇划分为两个簇.以此进行下去,直到簇的数目等于用户给定的数目k为止.以上隐含的一…
算法原理 KMeans算法是典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大.该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标.K个初始聚类中心点的选取对聚类结果具有较大的影响,因为在该算法第一步中是随机地选取任意k个对象作为初始聚类中心,初始地代表一个簇.该算法在每次迭代中对数据集中剩余的每个对象,根据其与各个簇中心的距离赋给最近的簇.当考查完所有数据对象后,一次迭代运算完成,新的聚类中心被计算出来.算法过程如下:(1)…