学习数据挖掘工具中,下面使用4种工具来对同一个数据集进行研究. 数据描述:下面这些数据是15个同学选修课程情况,在课程大纲中共有10门课程供学生选择,下面给出具体的选课情况,以ARFF数据文件保存,名称为TestStudenti.arff.我使用Apriori算法期望挖掘出学生选课的关联规则. @relation test_studenti @attribute Arbori_binari_de_cautare {TRUE, FALSE}@attribute Arbori_optimali {T…
Apriori算法与实例 R. Agrawal 和 R. Srikant于1994年在文献[2]中提出了Apriori算法,该算法的描述如下: 下面是一个具体的例子,最开始数据库里有4条交易,{A.C.D},{B.C.E},{A.B.C.E},{B.E},使用min_support=2作为支持度阈值,最后我们筛选出来的频繁集为{B.C.E}. 上述例子中,最值得我们从L2到C3的这一步.这其实就是在执行伪代码中第一个蓝色框条所标注的地方:Ck+1=GenerateCandidates(Lk),具…
1 Apriori介绍 Apriori算法使用频繁项集的先验知识,使用一种称作逐层搜索的迭代方法,k项集用于探索(k+1)项集.首先,通过扫描事务(交易)记录,找出所有的频繁1项集,该集合记做L1,然后利用L1找频繁2项集的集合L2,L2找L3,如此下去,直到不能再找到任何频繁k项集.最后再在所有的频繁集中找出强规则,即产生用户感兴趣的关联规则. 其中,Apriori算法具有这样一条性质:任一频繁项集的所有非空子集也必须是频繁的.因为假如P(I)< 最小支持度阈值,当有元素A添加到I中时,结果项…
1 Apriori介绍 Apriori算法使用频繁项集的先验知识,使用一种称作逐层搜索的迭代方法,k项集用于探索(k+1)项集.首先,通过扫描事务(交易)记录,找出所有的频繁1项集,该集合记做L1,然后利用L1找频繁2项集的集合L2,L2找L3,如此下去,直到不能再找到任何频繁k项集.最后再在所有的频繁集中找出强规则,即产生用户感兴趣的关联规则. 其中,Apriori算法具有这样一条性质:任一频繁项集的所有非空子集也必须是频繁的.因为假如P(I)< 最小支持度阈值,当有元素A添加到I中时,结果项…
一.关联规则简介 关联规则挖掘的目标是发现数据项集之间的关联关系,是数据挖据中一个重要的课题.关联规则最初是针对购物篮分析(Market Basket Analysis)问题提出的.假设超市经理想更多地了解顾客的购物习惯,特别是想知道,哪些商品顾客可能会在一次购物时同时购买?为回答该问题,可以对商店的顾客购买记录进行购物篮分析.该过程通过发现顾客放入"购物篮"中的不同商品之间的关联,分析顾客的购物习惯.这种关联的发现可以帮助零售商了解哪些商品频繁地被顾客同时购买,从而帮助他们开发更好的…
相对于机器学习,关联规则的apriori算法更偏向于数据挖掘. 1) 测试文档中调用weka的关联规则apriori算法,如下 try { File file = new File("F:\\tools/lib/data/contact-lenses.arff"); ArffLoader loader = new ArffLoader(); loader.setFile(file); Instances m_instances = loader.getDataSet(); Discre…
一.本课程是怎么样的一门课程(全面介绍) 1.1.课程的背景           “大数据”作为时下最火热的IT行业的词汇,随之而来的数据仓库.数据分析.数据挖掘等等围绕大数据的商业价值的利用逐渐成为行业人士争相追捧的利润焦点. “大数据” 其实离我们的生活并不遥远,大到微博的海量用户信息,小到一个小区超市的月销售清单,都蕴含着大量潜在的商业价值. 正是由于数据量的快速增长,并且已经远远超过了人们的数据分析能力.因此,科学.商用等领域都迫切需要智能化.自动化的数据分析工具.在这样的背景下,数据挖…
郑昀 基于杨海波的设计文档 创建于2015/8/13 最后更新于2015/8/25 关键词:异常流量.rate limiting.Nginx.Apriori.频繁项集.先验算法.Lua.ELK 本文档适用人员:技术人员 提纲: 所谓异常流量 如何识别异常流量 Apriori如何工作 如何让 Nginx 拦截可疑 IP 0x00,所谓异常流量 有害的异常流量大概分为以下几种: 僵尸网络中的节点对主站发起无目的的密集访问: 黑客.白帽子或某些安全公司为了做漏洞扫描,对主站各个 Web 工程发起字典式…
频繁模式是频繁地出如今数据集中的模式(如项集.子序列或者子结构).比如.频繁地同一时候出如今交易数据集中的商品(如牛奶和面包)的集合是频繁项集. 一些基本概念 支持度:support(A=>B)=P(A并B) 置信度:confidence(A=>B)=P(B|A) 频繁k项集:假设项集I的支持度满足提前定义的最小支持度阈值.则称I为频繁项集,包括k个项的项集称为k项集. 算法思想 Apriori算法是Agrawal和R. Srikant于1994年提出.为布尔关联规则挖掘频繁项集的原创性算法.…
Apriori算法原理:http://blog.csdn.net/kingzone_2008/article/details/8183768 import java.util.HashMap; import java.util.HashSet; import java.util.Iterator; import java.util.Map; import java.util.Set; import java.util.TreeMap; /** * <B>关联规则挖掘:Apriori算法<…