5.15 省选模拟赛 容斥 生成函数 dp】的更多相关文章

LINK:5.15 T2 个人感觉生成函数更无脑 容斥也好推的样子. 容易想到每次放数和数字的集合无关 所以得到一个dp f[i][j]表示前i个数字 逆序对为j的方案数. 容易得到转移 使用前缀和优化即可. 进一步的可以设出其生成函数 对于第i次放数字 生成函数为\(F(x)=1+x^1+x^2+...x^{n-i}\) 那么容易得到答案的生成函数为 \(G(x)=\frac{\Pi_{i=1}^{n}(1-x^i)}{(1-x)^n}\) 化简一下 然后dp出来方案数即可 可以发现这个dp是…
这道题确实没有一个很好的解决办法 唯一的正解可能就是打表找规律 或者 直接猜结论了吧. 尽管如此 在此也给最终结论一个完整的证明. 对于70分 容易发现状态数量不大 可以进行暴力dp求SG函数. 原本打算打表 实测状态数量只有1e5左右. const int maxn=800; int T,ans; int vis[100010]; int f[141][58][30][15];//表示当前状态为这个东西时的SG函数. int main() { freopen("a.in","…
LINK:5.15 T1 对于60分的暴力 都很水 就不一一赘述了. 由于是询问所有点的这种信息 确实不太会. 想了一下 如果只是询问子树内的话 dsu on tree还是可以做的. 可以自己思考一下. 如果强行dsu的时候做 会发现点对和点对之间难以解决. 考虑正解 点分治: 当x为分治中心还是需要统计点对和点对之间的贡献. 和刚才几乎一样.不过这个时候可以发现 需要对每个点都求一个答案. 对于深度为w的点 那么 贡献为\(\sum_{j=w}^{n}c_{j-w}a_j\) 其中\(c_x\…
好题 np. 对于20分 显然可以爆搜. 对于50分 可以发现每个字符串上的问号要么是0,要么是1.考虑枚举一个字符串当前是0还是1 这会和其他字符串产生矛盾. 所以容易 发现这是一个2-sat问题. 拆点 把任意两个产生矛盾的字符串进行连边.然后最后判矛盾即可. n^2枚举 建图 判断矛盾时使用字符串hash 要分类讨论4种情况. using namespace std; const int MAXN=1010,maxn=500010,cc1=19260817,cc2=114514; int…
LINK:T1 算是一道中档题 考试的时候脑残了 不仅没写优化 连暴力都打挂了. 容易发现一个性质 那就是同一格子不会被两种以上的颜色染.(颜色就三种. 通过这个性质就可以进行dp了.先按照左端点排序. 设f[i]表示前i个画笔必选的最大价值. 枚举决策j 分类讨论相交还是包含 还是相离. 其中包含的情况没必要讨论 相交需要比对一下颜色再进行转移 不过我写的时候多打一个东西导致爆零. 值得一提的是 对于相交的情况 相交的部分不会被之前转移的线段给交上去 可以证明这样不是最优的. 所以这样dp是正…
LINK:树的染色 考场上以为这道题要爆蛋了 没想到 推出正解来了. 反正是先写了爆搜的 爆搜最近越写越熟练了 容易想到dp 容易设出状态 f[i][j]表示以i为根的子树内白色的值为j此时黑色的值怎么样. 可以发现 当白色值固定的时候黑色值可能有多个 所以合法不合法这个状态不太行. 可以上f[i][j][k]了 不过这样复杂度极高 转移很暴力 不一定能跑过40. 考虑 对于一个白色颜色和为j来说 那么黑色和 有k1 k2都是合法了 容易得到只有较小的一个才有用. 那么就有状态了 f[i][j]…
LINK:T3 比较好的题目 考试的时候被毒瘤的T2给搞的心态爆炸 这道题连正解的思路都没有想到. 一看到题求删除点的最少个 可以使得不连通. 瞬间想到最小割 发现对于10分直接跑最小割即可. 不过想要通过n^2需要一些奇技 如从Si跑到Tj 想要得到i到j+1的答案 只需要再从Tj跑到Tj+1即可. 可以发现这样做是有正确性的保证的 这样最多跑n次整张图的最大流. 且增广路不断减小 速度比较快. const int MAXN = 40010; int n, k, id, cc, len; ll…
由于圆不存在相交的关系 所以包容关系形成了树的形态 其实是一个森林 不过加一个0点 就变成了树. 考虑对于每个圆都求出最近的包容它的点 即他的父亲.然后树形dp即可.暴力建图n^2. const int MAXN=100010; int n,m,len; struct wy { ll x,y,r,w; inline int friend operator <(wy a,wy b){return a.r<b.r;} }t[MAXN]; int f[MAXN]; int lin[MAXN],ver…
今天是[LnOI2019]长脖子鹿省选模拟赛的时间,小编表示考的不怎么样,改了半天也只会改第一题,那也先呈上题解吧. T1:P5248 [LnOI2019SP]快速多项式变换(FPT) 一看这题就很手软,没有告诉具体多项式到底有多少项,只好一个一个暴力枚举,但是这也不现实,于是小编就开始骗分,还一分也没骗着.赛后小编看到的题解,才明白这是一道转进制的题,将十进制转换成m进制,m^0,m^1,m^2这不刚好对应上m进制的单位吗?所得结果刚好就是问题的解.那么用短除法模拟算出m进制下f(m)的每一位…
浅析容斥和DP综合运用 前言 众所周知在数数题中有一种很重要的计数方法--容斥.但是容斥有一个很大的缺陷:枚举子集的复杂度过高.所以对于数据规模较大的情况会很乏力,那么我们就只能引入容斥DP. 复习一下容斥 什么情况下用容斥?容斥能干什么? 容斥的基本功能就是当你知道任意个指定集合的交集,你就能推出这些集合的并集. 形式化的来说,就是: \[ \left|\bigcup_{i=1}^{n} A_{i}\right|=\sum_{i=1}^{n}\left|A_{i}\right|-\sum_{1…