首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
【计算机视觉】如何使用opencv自带工具训练人脸检测分类器
】的更多相关文章
【计算机视觉】如何使用opencv自带工具训练人脸检测分类器
前言 使用opencv自带的分类器效果并不是很好,由此想要训练自己的分类器,正好opencv有自带的工具进行训练.本文就对此进行展开. 步骤 1.查找工具文件: 2.准备样本数据: 3.训练分类器: 具体操作 注意,本文是在windows系统实现的,当然也可以在linux系统进行. 1.查找工具文件: opencv中的自带的分类器训练工具在开源库中以应用程序的类型呈现的,具体目录如下. .\opencv2410\build\x64\vc12\bin 可以在该目录下查找到相关的工具文件,有open…
opencv人脸检测分类器训练小结
这两天在初学目标检测的算法及步骤,其中人脸检测作为最经典的算法,于是进行了重点研究.该算法最重要的是建立人脸检测分类器,因此我用了一天的时间来学习分类器的训练.这方面的资料很多,但是能按照一个资料运行出结果的确实没有找到,因此我总结了自己的训练经验. 目标检测分为三个步骤: 1.样本的创建 2.训练分类器 3.利用训练的分类器进行目标检测 第一步:样本的创建 ◆ 样本分两种: 正样本与负样本(也有人翻译成:正例样本和反例样本),其中正样本是指待检目标样本(例如人脸,汽车,鼻子等),负样本…
基于AdaBoost算法——世纪晟结合Haar-like特征训练人脸检测识别
AdaBoost 算法是一种快速人脸检测算法,它将根据弱学习的反馈,适应性地调整假设的错误率,使在效率不降低的情况下,检测正确率得到了很大的提高. 系统在技术上的三个贡献: 1.用简单的Haar-like矩形特征作特征,可快速计算 2.基于AdaBoost的分类器设计 3.采用了Cascade(分级分类器)技术提高检测速度 人脸的特征表示方法——Haar-like矩形特征 矩形特征的值是所有白色矩形中点的亮度值的和减去所有灰色矩形中点的亮度值的和,所得到的差 具体特征可以用一个五元组…
opencv利用Cascade Classifier训练人脸检测器
opencv默认提供了haar特征和lbp特征训练的人脸分类器,但是效果不太好,所以我们可以用opencv提供的跑opencv_traincascade函数来训练一个LBP特征的分类器.(由于opencv3中hog与hog文章定义的不同,因此在opencv3 的opencv_traincascade函数中被删掉了详情) LBP特征 按照官方文档的训练流程: 1. 准备训练数据 首先把正例和负例样本按下面的结构存放: train -pos -- info.dat -- img ---- 1.jpg…
opencv 比较直方图方式 进行人脸检测对比
完整opencv(emgucv)人脸.检测.采集.识别.匹配.对比 //成对几何直方图匹配 public static string MatchHist() { string haarXmlPath = @"haarcascade_frontalface_alt_tree.xml"; HaarCascade haar = new HaarCascade(haarXmlPath); …
OpenCV神技——人脸检测,猫脸检测
简介 OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows.Android和Mac OS操作系统上.它轻量级而且高效--由一系列 C 函数和少量 C++ 类构成,同时提供了Python.Ruby.MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法. OpenCV的官方网址为:https://opencv.org/, 其Github网址为:https://github.com/opencv . 本文将会介绍OpenCV在…
opencv 美白磨皮人脸检测<转>
1. 简介 这学期的计算机视觉课,我们组的课程项目为“照片自动美化”,其中我负责的模块为人脸检测与自动磨皮.功能为:用户上传一张照片,自动检测并定位出照片中的人脸,将照片中所有的人脸进行“磨皮”处理,使照片得到自动美化.完整代码见于GitHub. 2. 重要步骤 人脸检测 OpenCV样例库中自带的训练结果采用的是Viola-Jones框架,选择了一种类Haar矩形特征,采用Ada-Boost这种自适应上升的算法来选择用于分类的特征并进行分类,最后使用弱分类器级联的架构来实现快速运算.人脸检测使…
基于OpenCV读取摄像头进行人脸检测和人脸识别
前段时间使用OpenCV的库函数实现了人脸检测和人脸识别,笔者的实验环境为VS2010+OpenCV2.4.4,opencv的环境配置网上有很多,不再赘述.检测的代码网上很多,记不清楚从哪儿copy的了,识别的代码是从OpenCV官网上找到的:http://docs.opencv.org/trunk/modules/contrib/doc/facerec/facerec_api.html 需要注意的是,opencv的FaceRecogizer目前有三个类实现了它,特征脸和fisherface方法…
如何利用OpenCV自带的级联分类器训练程序训练分类器
介绍 使用级联分类器工作包括两个阶段:训练和检测. 检测部分在OpenCVobjdetect 模块的文档中有介绍,在那个文档中给出了一些级联分类器的基本介绍.当前的指南描述了如何训练分类器:准备训练数据和运行训练程序.参考:http://jingyan.baidu.com/article/4dc40848f50689c8d946f197.html 利用OpenCV自带的haar training程序训练一个分类器,需要经过以下几个步骤: )收集训练样本: 训练样本包括正样本和…
如何用OpenCV自带的adaboost程序训练并检测目标
参考博文: 1.http://blog.csdn.net/wuxiaoyao12/article/details/39227189 2.http://www.cnblogs.com/easymind223/archive/2012/07/03/2574826.html 3.http://blog.csdn.net/liulina603/article/details/8197889 使用的经验总结: 1 正负样本比例问题:1:4或者1:5训练出来的分类器要优于1:1或者1:10 正负样本比例接近…