最近看了吴恩达老师的深度学习课程,又看了python深度学习这本书,对深度学习有了大概的了解,但是在实战的时候, 还是会有一些细枝末节没有完全弄懂,这篇文章就用来总结一下用keras实现深度学习算法的时候一些我自己很容易搞错的点. 一.与序列文本有关 1.仅对序列文本进行one-hot编码 比如:使用路透社数据集(包含许多短新闻及其对应的主题,包括46个不同的主题,每个主题有至少10个样本) from keras.datasets import reuters (train_data,train…
在使用pytorch或tensorflow等神经网络框架进行nlp任务的处理时,可以通过对应的Embedding层做词向量的处理,更多的时候,使用预训练好的词向量会带来更优的性能.下面分别介绍使用gensim和torchtext两种加载预训练词向量的方法. 1.使用gensim加载预训练词向量    对于如下这样一段语料 test_sentence = """When forty winters shall besiege thy brow,And dig deep tren…
Embedding tflearn.layers.embedding_ops.embedding (incoming, input_dim, output_dim, validate_indices=False, weights_init='truncated_normal', trainable=True, restore=True, reuse=False, scope=None, name='Embedding') Embedding layer for a sequence of int…
不涉及具体代码,只是记录一下自己的疑惑. 我们知道对于在pytorch中,我们通过构建一个词向量矩阵对象.这个时候对象矩阵是随机初始化的,然后我们的输入是单词的数值表达,也就是一些索引.那么我们会根据索引,赋予每个单词独一无二的一个词向量表达.在其后的神经网络训练过程中,每个单词对应独一无二的索引,从而对应自己的词向量,词向量会随着迭代进行更新. 上面讲的这个是使用pytorch词向量的随机初始化的流程. 但是我们如果使用预训练的词向量怎么办呢?很多例子中,直接就给个代码是类似这样的: self…
翻车2次,试水2次,今天在B站终于成功直播了. 人气11万. 主要讲了语言模型.词向量的训练.ELMo模型(深度.双向的LSTM模型) 预训练与词向量 词向量的常见训练方法 深度学习与层次表示 LSTM, BI-LSTM模型回顾 基于BI-LSTM的ELMo算法 总结…
转载 https://zhuanlan.zhihu.com/p/49271699 首发于深度学习前沿笔记 写文章   从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 张俊林 你所不知道的事 179 人赞了该文章 Bert最近很火,应该是最近最火爆的AI进展,网上的评价很高,那么Bert值得这么高的评价吗?我个人判断是值得.那为什么会有这么高的评价呢?是因为它有重大的理论或者模型创新吗?其实并没有,从模型创新角度看一般,创新不算大.但是架不住效果太好了,基本刷新了很…
从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 Bert最近很火,应该是最近最火爆的AI进展,网上的评价很高,那么Bert值得这么高的评价吗?我个人判断是值得.那为什么会有这么高的评价呢?是因为它有重大的理论或者模型创新吗?其实并没有,从模型创新角度看一般,创新不算大.但是架不住效果太好了,基本刷新了很多NLP的任务的最好性能,有些任务还被刷爆了,这个才是关键.另外一点是Bert具备广泛的通用性,就是说绝大部分NLP任务都可以采用类似的两阶段模式直接去提升效果,这…
在训练较大网络时, 往往想加载预训练的模型, 但若想在网络结构上做些添补, 可能出现问题一二... 一下是添补的几种情形, 此处以单输出回归任务为例: # 添在末尾: base_model = InceptionV3(weights='imagenet', include_top=False) x = base_model.output x = GlobalAveragePooling2D()(x) x = Dense(1, activation='relu')(x) model = Model…
一.简介: 1.概念:glove是一种无监督的Word representation方法. Count-based模型,如GloVe,本质上是对共现矩阵进行降维.首先,构建一个词汇的共现矩阵,每一行是一个word,每一列是context.共现矩阵就是计算每个word在每个context出现的频率.由于context是多种词汇的组合,其维度非常大,我们希望像network embedding一样,在context的维度上降维,学习word的低维表示.这一过程可以视为共现矩阵的重构问题,即recon…
预训练语言模型的前世今生 - 从Word Embedding到BERT 本篇文章共 24619 个词,一个字一个字手码的不容易,转载请标明出处:预训练语言模型的前世今生 - 从Word Embedding到BERT - 二十三岁的有德 目录 一.预训练 1.1 图像领域的预训练 1.2 预训练的思想 二.语言模型 2.1 统计语言模型 神经网络语言模型 三.词向量 3.1 独热(Onehot)编码 3.2 Word Embedding 四.Word2Vec 模型 五.自然语言处理的预训练模型 六…