0.前言 因为本人太蒟了 我现在连NOIP的初赛都在胆战心惊 并且我甚至连最小生成树都没有学过 所以这一篇博客一定是最详细的QAQ 哈哈 请您认真看完如果有疏漏之处敬请留言指正 感谢! Thanks♪(・ω・)ノ 1.最小生成树概念 最小生成树到底是什么呢?满脸疑惑 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边 ——源自百度百科 在一给定的无向图G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即),…
并查集 & 最小生成树 并查集 Disjoint Sets 什么是并查集?     并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中.这一类问题近几年来反复出现在信息学的国际国内赛题中,其特点是看似并不复杂,但数据量极大,若用正常的数据结构来描述的话,往往在空间上过大,计算机无法承受:即使在空间上勉强通过,运行的时间复杂度也极高,根本就不可能在比赛规定的运行时间(1-3秒…
刚学完最小生成树,赶紧写写学习的心得(其实是怕我自己忘了) 最小生成树概念:一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边. 就是说如果我们想把一张有n个点的图连接起来,那我们就只需要n-1条边(原因显然:就如同一条有n个点的线段,他们之间最少需要n-1条边连起来) 最小生成树就是寻找值最小的这n-1个点,把他们加和. 首先,最小生成树最基本的算法是Prim和Kruskal算法 Prim算法: 算法分析&思想讲解: Prim算法…
题目连接:problemId=542" target="_blank">ZOJ 1542 POJ 1861 Network 网络 Network Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge Andrew is working as system administrator and is planning to establish a new network in his com…
题目 n个村庄间架设通信线路,每个村庄间的距离不同,如何架设最节省开销? Kruskal算法 特点 适用于稀疏图,时间复杂度 是nlogn的. 核心思想 从小到大选取不会产生环的边. 代码实现 代码中需要采用并查集的方法检测是否有环. static class Edge { int a, b, val; public Edge(int a, int b, int val) { this.a = a; this.b = b; this.val = val; } } int[] father; //…
看完之后推荐再看一看[最小生成树之Prim算法]-C++ 定义:一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边.最小生成树可以用kruskal(克鲁斯卡尔)算法或Prim(普里姆)算法求出. . ​在一给定的无向图G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即),而 w(u, v) 代表此边的权重,若存在 T 为 E 的子集(即)且为无循环图,使得 的 w(T) 最小,则此 T 为 G 的最小生成…
经典的最小生成树例子,Prime算法,具体的步骤及其注释本人均在代码中附加,请仔细阅读与品味,要求,可以熟练的打出. //Prime算法基础 #include<iostream> using namespace std; int main() { int n,m,i,j,k,min,t1,t2,t3; ][],dis[],book[] = {}; ; ,sum = ; cin >> n >> m; //初始化 用邻接矩阵存储 ;i <= n;i++) ;j <…
给定一个无向图,如果它任意两个顶点都联通并且是一棵树,那么我们就称之为生成树(Spanning Tree).如果是带权值的无向图,那么权值之和最小的生成树,我们就称之为最小生成树(MST, Minimum Spanning Tree). 我们由最小生成树的定义,可以延伸出一个修建道路的问题:把无向图的每个顶点看作村庄,计划修建道路使得可以在所有村庄之间通行.把每个村庄之间修建道路的费用看作权值,那么我们就可以得到一个求解修建道路的最小费用的问题. 常见求解最小生成树的算法有Kruskal算法和P…
设G=(V,E)是无向连通带权图,V={1,2,…,n}: 设最小生成树T=(V,TE),该树的初始状态为只有n个顶点而无边的非连通图T=(V,{}),Kruskal算法将这n个顶点看成是n个孤立的连通分支. 它首先将所有的边按权值从小到大排序,然后只要T中选中的边数不到n-1,就做如下的贪心选择: 在边集E中选取权值最小的边(i,j),如果将边(i,j)加入集合TE中不产生回路(圈),则将边(i,j)加入边集TE中,即用边(i,j)将这两个连通分支合并连接成一个连通分支: 否则继续选择下一条最…
更多精彩尽在微信公众号[程序猿声] 变邻域搜索算法(Variable Neighborhood Search,VNS)一看就懂的解析 00 目录 局部搜索再次科普 变邻域搜索 造轮子写代码 01 局部搜索科普三连 虽然之前做的很多篇启发式的算法都有跟大家提过局部搜索这个概念,为了加深大家的印象,在变邻域主角登场之前还是给大家科普一下相关概念.热热身嘛- 1.1 局部搜索是什么玩意儿? 官方一点:局部搜索是解决最优化问题的一种启发式算法.对于某些计算起来非常复杂的最优化问题,比如各种NP完全问题,…