常见的一种决策树算法是ID3,ID3的做法是每次选择当前最佳的特征来分割数据,并按照该特征所有可能取值来切分,也就是说,如果一个特征有四种取值,那么数据将被切分成4份,一旦按某特征切分后,该特征在之后的算法执行过程中将不会在起作用,这种切分方法比较迅速,但是一个比较明显的缺点是不能直接处理连续型的特征,只有事先将连续型的数据转换成离散型才能再ID3算法中使用. CART(Classification And Regression Tree)算法采用一种二分递归分割的技术,将当前的样本集分为两个子…
# -*- coding:utf-8 -*- import os import numpy as np import torch import cv2 import torch.nn as nn from torch.utils.data import DataLoader import torchvision.transforms as transforms import torchvision.utils as vutils from torch.utils.tensorboard impo…
近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中.随着注意力机制的深入研究,各式各样的attention被研究者们提出.在2017年6月google机器翻译团队在arXiv上放出的<Attention is all you need>论文受到了大家广泛关注,自注意力(self-attention)机制开始成为神经网络attention的研究热点,在各个任务上也取得了不错的效果.对这篇论文中的self-attention以及一些相关工作进行了学习…