(CV学习笔记)梯度下降优化算法】的更多相关文章

梯度下降法 梯度下降法是训练神经网络最常用的优化算法 梯度下降法(Gradient descent)是一个 ==一阶最优化算法== ,通常也称为最速下降法.要使用梯度下降法找到一个函数的 ==局部最小值==,必须想函数上当前点对应的==梯度==(或者是近似梯度)的反方向的规定部长距离点进行==迭代==搜索. 梯度下降法基于以下的观察:如果实值函数$f(x)$在a点处==可微==并且有定义,那么函数$f(x)$在点a沿着==梯度==相反的方向$-\nabla f(a)$下降最快 $$\theta…
现代的机器学习系统均利用大量的数据,利用梯度下降算法或者相关的变体进行训练.传统上,最早出现的优化算法是SGD,之后又陆续出现了AdaGrad.RMSprop.ADAM等变体,那么这些算法之间又有哪些区别和联系呢?本文试图对比的介绍目前常用的基于一阶梯度的优化算法,并给出它们的(PyTorch)实现. SGD 算法描述 随机梯度下降法(Stochastic Gradient Descent,SGD)是对传统的梯度下降算法(Gradient Descent,GD)进行的一种改进.在应用GD时,我们…
[前言] 对于矩阵(Matrix)的特征值(Eigens)求解,采用数值分析(Number Analysis)的方法有一些,我熟知的是针对实对称矩阵(Real Symmetric Matrix)的特征值和特征向量(Characteristic Vectors)求解算法——雅克比算法(Jacobi).Jacobi算法的原理和实现可以参考[https://blog.csdn.net/zhouxuguang236/article/details/40212143].通过Jacobi算法可以以任意精度近…
原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- Direct12优化 第一章:向量代数 1.向量计算的时候,使用XMVECTOR(可以利用SIMD优点):类成员变量使用XMFLOAT2 (2D),XMFLOAT3 (3D),和XMFLOAT4 (4D) . 2.向函数传递参数的时候(XMVECTOR可以直接传递到SSE/SSE2)前三个参数类型要定义为FXMVECTOR: 第四个要定义为GXMVECTOR: 第五个…
机器学习实战(Machine Learning in Action)学习笔记————08.使用FPgrowth算法来高效发现频繁项集 关键字:FPgrowth.频繁项集.条件FP树.非监督学习作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiongit@github.c…
机器学习实战(Machine Learning in Action)学习笔记————07.使用Apriori算法进行关联分析 关键字:Apriori.关联规则挖掘.频繁项集作者:米仓山下时间:2018-11-2机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiongit@github.com:pbharri…
机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN) 关键字:邻近算法(kNN: k Nearest Neighbors).python.源码解析.测试作者:米仓山下时间:2018-10-21机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiong…
[ML学习笔记] 朴素贝叶斯算法(Naive Bayesian) 贝叶斯公式 \[P(A\mid B) = \frac{P(B\mid A)P(A)}{P(B)}\] 我们把P(A)称为"先验概率"(Prior probability),即在B事件发生之前,对A事件概率的一个判断.P(A|B)称为"后验概率"(Posterior probability),即在B事件发生之后,对A事件概率的重新评估.P(B|A)/P(B)称为"可能性函数"(Lik…
# Author Qian Chenglong from numpy import * from numpy.ma import arange def loadDataSet(): dataMat = [] labelMat = [] fr = open('testSet.txt') for line in fr.readlines(): lineArr = line.strip().split() dataMat.append([1.0, float(lineArr[0]), float(li…
Effective STL 学习笔记 31:排序算法 */--> div.org-src-container { font-size: 85%; font-family: monospace; } pre.src { background-color:#f8f4d7 } p {font-size: 15px} li {font-size: 15px} Table of Contents partial_sort nth_element stability partition 总结 1 parti…