一阶板,一次压合即成,可以想像成最普通的板二阶板,两次压合,以盲埋孔的八层板为例,先做2-7层的板,压好,这时候2-7的通孔埋孔已经做好了,再加1层和8层压上去,打1-8的通孔,做成整板.三阶板就比上面更复杂,先压3-6层,再加上2和7层,最后加上1到8层,一共要压合三次,一般厂家做不了.   一阶的比较简单,流程和工艺都好控制. 二阶的就开始麻烦了,一个是对位问题,一个打孔和镀铜问题.二阶的设计有多种,一种是各阶错开位置,需要连接次邻层时通过导线在中间层连通,做法相当于2个一阶HDI.第二…
我们仍然使用披萨直径的价格的数据 import matplotlib matplotlib.rcParams['font.sans-serif']=[u'simHei'] matplotlib.rcParams['axes.unicode_minus']=False import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegres…
1 最优化概论 (1) 最优化的目标 最优化问题指的是找出实数函数的极大值或极小值,该函数称为目标函数.由于定位\(f(x)\)的极大值与找出\(-f(x)\)的极小值等价,在推导计算方式时仅考虑最小化问题就足够了.极少的优化问题,比如最小二乘法,可以给出封闭的解析解(由正规方程得到).然而,大多数优化问题,只能给出数值解,需要通过数值迭代算法一步一步地得到. (2) 有约束和无约束优化 一些优化问题在要求目标函数最小化的同时还要求满足一些等式或者不等式的约束.比如SVM模型的求解就是有约束优化…
1 2 损失函数+惩罚函数 2阶导数…
1. 3D分析 1.1. 3D Features toolset 工具 工具 描述 3D Features toolset (3D 要素工具集) Add Z Information 添加 Z 信息 添加关于具有 Z 值的要素类中的要素的高程属性的信息. Buffer 3D 3D 缓冲 围绕点或线创建三维缓冲区以生成球形或圆柱形的多面体要素. Difference 3D 3D 差异 消除目标要素类中部分与减法要素类中闭合的多面体要素体积重叠的多面体要素. Enclose Multipatch 封闭…
本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/25560901 作者:毛星云(浅墨)    微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: happylifemxy@163.com 写作当前博文时配套使用的OpenCV版本号: 2.4.9 本篇文章中,我们将一起学习Ope…
一.简介 sobel算子主要是用于获得数字图像的一阶梯度,常见的应用是边缘检测. Ⅰ.水平变化: 将 I 与一个奇数大小的内核进行卷积.比如,当内核大小为3时, 的计算结果为: Ⅱ.垂直变化: 将: I 与一个奇数大小的内核进行卷积.比如,当内核大小为3时, 的计算结果为: Opencv中Sobel函数使用扩展的Sobel算子,来计算一阶.二阶.三阶或混合图像差分. CV_EXPORTS_W , , int borderType=BORDER_DEFAULT ); 第一个参数,InputArra…
师者传道受业解惑也,图片识别是门学科,需要师者传教,才会较快解开谜团,解开困惑,没人引导,要学会图片识别,有点难度,因为其中的做法超出自己的想象范围. 大家都知道,在超出想象范围,或者从未想到的方式,也几乎不可能想到的方式.通过老师的引导必然事半功倍.所以有时不要逞强,觉得从师会降低自己的学习能力. 以上是学习opencv的一点心理历程. 荀子劝学,君子生非异也,善假于物也. Sobel 使用扩展 Sobel 算子计算一阶.二阶.三阶或混合图像差分 void cvSobel( const CvA…
使用心得:用起来相当的顺手,强烈推荐小伙伴使用该工具,内置快捷功能很贴心 工具下载: https://download.csdn.net/download/lele508994993/10392197 区块嵌套 输入一个 > 符号就可以开始引用.引用可以嵌套 效果: 标题 快捷键: ctrl+数字 ​ 在行首插入一到六个‘#’对应一到六阶标题 ​ 举例: # 一阶标题 ## 二阶标题 ### 三阶标题 #### 四阶标题 ##### 五阶标题 ###### 六阶标题 效果: 列表 无序列表:输入…
http://blog.csdn.net/poem_qianmo/article/details/25560901 本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/25560901 作者:毛星云(浅墨)    微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: happylif…
本篇文章中,我们将一起学习OpenCV中边缘检测的各种算子和滤波器——Canny算子,Sobel算子,Laplace算子以及Scharr滤波器.文章中包含了五个浅墨为大家准备的详细注释的博文配套源代码.在介绍四块知识点的时候分别一个,以及最后的综合示例中的一个.文章末尾提供配套源代码的下载. **** 给大家分享一个OpenCv中写代码是节约时间的小常识.其实OpenCv中,不用nameWindow,直接imshow就可以显示出窗口.大家看下文的示例代码就可以发现,浅墨在写代码的时候并没有用na…
一.兼容 HTML Markdown 的理念是,能让文档更容易读.写和随意改.HTML 是一种发布的格式,Markdown 是一种书写的格式.就这样,Markdown 的格式语法只涵盖纯文本可以涵盖的范围. 不在 Markdown 涵盖范围之内的标签,都可以直接在文档里面用 HTML 撰写.不需要额外标注这是 HTML 或是 Markdown:只要直接加标签就可以了. 1-HTML块级(区块)标签 要制约的只有一些 HTML 区块元素――比如 <div>.<table>.<p…
SVM简述: SVM是一个线性二类分类器,当然通过选取特定的核函数也可也建立一个非线性支持向量机.SVM也可以做一些回归任务,但是它预测的时效性不是太长,他通过训练只能预测比较近的数据变化,至于再往后的变化SVM可能就不起作用了. SVM的思想 下面举个简单的例子.如下图所示,现在有一个二维平面,平面上有两种不同的数据,分别用圈和叉表示.由于这些数据是线性可分的,所以可以用一条直线将这两类数据分开,这条直线就相当于一个超平面,超平面一边的数据点所对应的y全是-1 ,另一边所对应的y全是1. 这个…
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有一些 也可以划归到计算机视觉中去.这都不重要,只要知道有这么个方法,能为自己 所用,或者从中得到灵感,这就够了. 8. Edge Detection 边缘检测也是图像处理中的一个基本任务.传统的边缘检测方法有基于梯度 算子,尤其是 Sobel 算子,以及经典的 Canny 边缘检测.到现在,Cann…
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有一些 也可以划归到计算机视觉中去.这都不重要,只要知道有这么个方法,能为自己 所用,或者从中得到灵感,这就够了. 8. Edge Detection 边缘检测也是图像处理中的一个基本任务.传统的边缘检测方法有基于梯度 算子,尤其是 Sobel 算子,以及经典的 Canny 边缘检测.到现在,Cann…
四.图像处理(呵呵,重头戏来了) 1. 滤波 filter2D() 用核函数对图像做卷积. sepFilter2D() 用分解的核函数对图像做卷积. 首先,图像的每一行与一维的核kernelX做卷积:然后,运算结果的每一列与一维的核kernelY做卷积. boxFilter() 就是滑动窗口平均滤波的二维版. GaussianBlur() 高斯平均,也就是高斯模糊. medianBlur() 中值滤波,个人最爱的滤波函数. bilateralFilter() 双线性滤波. 前面这四个函数是原来O…
在图像处理中,求解图像梯度是常用操作. Sobel算子 Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator. Sobel 算子是一种离散性差分算子,用来计算图像像素值的一阶.二阶.三阶或混合梯度.在图像的任何一点使用此算子,将会产生对应的灰度矢量或是其法矢量. C++: , , , int borderType=BORDER_DEFAULT ) C: )…
前言 之前被安排了活,一个局部区域机器运动控制的工作,大致是一个机器位于一个极限区域时候,机器要进入一个特殊的机制,使得机器可以安全的走出来.其中用到了bezier曲线进行优化路径,今天写一下,正好也给大家分享一下工作和实践的情况. 作者:良知犹存 转载授权以及围观:欢迎关注微信公众号:羽林君 或者添加作者个人微信:become_me 贝塞尔曲线基本介绍 线段都可以被拆分成两个坐标的差来表示,如下面一阶的贝塞尔曲线,P0到P1,可以用一个t进行拆分这段线,分别是线段 t(P0-P1).线段 1-…
[TOC] 前言 在自然语言处理过程中,经常会涉及到如何度量两个文本之间的相似性,我们都知道文本是一种高维的语义空间,如何对其进行抽象分解,从而能够站在数学角度去量化其相似性.而有了文本之间相似性的度量方式,我们便可以利用划分法的K-means.基于密度的DBSCAN或者是基于模型的概率方法进行文本之间的聚类分析:另一方面,我们也可以利用文本之间的相似性对大规模语料进行去重预处理,或者找寻某一实体名称的相关名称(模糊匹配).而衡量两个字符串的相似性有很多种方法,如最直接的利用hashcode,以…
尺度不变特征变换匹配算法 对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越.1.SIFT综述 尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置.尺度.旋转不变量,此算法由 David Lowe在1999年所发表,2004年完善总结. 其应用范围包含物体辨识.机器人地图感知与导航.影像缝合.3D模型建立.手势辨识.影像追踪和动作比…
http://blog.csdn.net/zddblog/article/details/7521424 目录(?)[-] 尺度不变特征变换匹配算法详解 Scale Invariant Feature TransformSIFT Just For Fun zdd  zddmailgmailcom or zddhubgmailcom SIFT综述 高斯模糊 1二维高斯函数 2 图像的二维高斯模糊 3分离高斯模糊 1 尺度空间理论 2 尺度空间的表示 3 高斯金字塔的构建 尺度空间在实现时使用高斯金…
尺度不变特征变换匹配算法详解Scale Invariant Feature Transform(SIFT)Just For Fun zdd  zddmail@gmail.com 对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越. 1.SIFT综述 尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置.尺度.旋转不变量,此算法由 Da…
最大似然估计&贝叶斯估计 与传统计量模型相对的统计方法,存在 1)参数的解释不同:经典估计:待估参数具有确定值它的估计量才是随机的.如果估计量是无偏的,该估计量的期望等于那个确定的参数.bayes待估参数服从某种分布的随机变量. 2)利用的信息不同:经估:只利用样本信息,bayes要求事先提供一个参数的先验分布,即人们对有关参数的主观认识,是非样本信息.在参数估计中它们与样本信息一起被利用. 3)对随机误差项的要求不同,经典估计除了最大似然法在参数估计中不要求知道随机误差项的具体分布形式在假设检…
作者:桂. 时间:2017-04-06  12:29:26 链接:http://www.cnblogs.com/xingshansi/p/6672908.html 声明:欢迎被转载,不过记得注明出处哦~ 前言 之前在梳理最小二乘的时候,矩阵方程有一类可以利用非负矩阵分解(Non-negative matrix factorization, NMF)的方法求解,经常见到别人提起这个算法,打算对此梳理一下.优化问题求解,最基本的是问题描述与准则函数的定义,紧接着才涉及准则函数的求解问题,本文为NMF…
尺度不变特征变换匹配算法详解Scale Invariant Feature Transform(SIFT)Just For Fun zdd  zddmail@gmail.com or (zddhub@gmail.com) 对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越. 如果你学习SIFI得目的是为了做检索,也许OpenSSE更适合你,欢迎使用. 1.SIFT综述 尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种…
插值interpolate模块 计算插值有两个基本方法: 1.对一个完整的数据集去拟合一个函数(一条线穿过所有数据集的点) 2.对数据集的不同部分拟合出不同的函数,而函数之间的曲线平滑对接 一维插值 interp1d(x, y, kind='linear', ...) x和y参数是一系列已知的数据点,kind参数是插值类型,可以是字符串或整数, 候选值 作用 "zero"."nearest" 阶梯插值,相当于0阶B样条曲线 ‘slinear’ .'linear' 线…
一  简单介绍 SciPy是基于NumPy开发的高级模块,它提供了许多数学算法和函数的实现,用于解决科学计算中的一些标准问题.例如数值积分和微分方程求解,扩展的矩阵计算,最优化,概率分布和统计函数,甚至包括信号处理等. 作为标准科学计算程序库,SciPy类似于Matlab的工具箱,它是Python科学计算程序的核心包,它用于有效地计算NumPy矩阵,与NumPy矩阵协同工作. SciPy库由一些特定功能的子模块构成,如下表所示: 模块 功能 cluster 矢量量化 / K-均值 constan…
转自:http://blog.csdn.net/pi9nc/article/details/23302075 对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越. 1.SIFT综述 尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置.尺度.旋转不变量,此算法由 David Lowe在1999年所发表,2004年完善总结. 其应用范围…
从这篇开始,我将延续androidGraphics系列文章把图片相关的知识给大家讲完,这一篇先稍微进阶一下,给大家把<android Graphics(二):路径及文字>略去的quadTo(二阶贝塞尔)函数,给大家补充一下. 本篇最终将以两个例子给大家演示贝塞尔曲线的强大用途: 1.手势轨迹 利用贝塞尔曲线,我们能实现平滑的手势轨迹效果 2.水波纹效果 电池充电时,有些手机会显示水波纹效果,就是这样做出来的. 废话不多说,开整吧 一.概述 在<android Graphics(二):路径…