DNN-HMM】的更多相关文章

转载声明:本文为转载文章 作者:ferb2015 原文地址:https://blog.csdn.net/eqiang8848/article/details/81543599 kaldi是一个开源的语音识别工具箱,是基于c++.perl.shell编写的,可以在windows和unix 平台上编译. 中文参考资料:<kaldi的全部资料_v0.7(未完成版本).pdf>.网盘链接 提取码:yuq0 教程网页:http://www.kaldi-asr.org/doc/ 里面可以查阅脚本的用途.使…
1. HMM背景 0x1:概率模型 - 用概率分布的方式抽象事物的规律 机器学习最重要的任务,是根据一些已观察到的证据(例如训练样本)来对感兴趣的未知变量(例如类别标记)进行估计和推测. 概率模型(probabilistic model)提供了一种描述框架,将学习任务归结于计算未知变量的概率分布,而不是直接得到一个确定性的结果. 在概率模型中,利用已知变量推测未知变量的分布称为“推断(inference)”,其核心是如何基于可观测变量推测出未知变量的条件分布. 具体来说,假定所关心的变量集合为…
作者:zqh_zy链接:http://www.jianshu.com/p/c5fb943afaba來源:简书著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 本文通过简单kaldi源码,分析DNN训练声学模型时神经网络的输入与输出.在进行DNN训练之前需要用到之前GMM-HMM训练的模型,以训练好的mono模型为例,对模型进行维特比alignement(对齐),该部分主要完成了每个语音文件的帧到transition-id的映射. 不妨查看对齐后的结果: $ copy-int-…
转自:http://blog.csdn.net/huchad/article/details/52092796 使用kaldi的DNN做音频分类,异常声音检测. HMM/GMM -> HMM/DNN 基本上沿用语音识别的思路,有两点注意一下即可. 1. 在训HMM/GMM时,训到monophone即可,使用monophone的HMM与alignment来训DNN 2.语言模型的准备,手动构造一个一元的简单模型即可 DNN的主要训练步骤如下: #Step 1. Pre-train DBN step…
DNN声学模型说话人自适应的经验性评估 年3月27日 发表于:Sound (cs.SD); Computation and Language (cs.CL); Audio and Speech Processing (eess.AS)     说话人自适应时从说话人无关模型中估计一个说话人相关的声学模型,以减小训练集与测试集由于说话人差异导致的不匹配.     已经出现了许多DNN自适应方法,但是缺乏实验比较.     声学模型采用TDNN-LSTM声学模型.     自适应源时标准中文普通话声…
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 1 算法简介 在 结巴分词2--基于前缀词典及动态规划实现分词 博文中,博主已经介绍了基于前缀词典和动态规划方法实现分词,但是如果没有前缀词典或者有些词不在前缀词典中,jieba分词一样可以分词,那么jieba分词是如何对未登录词进行分词呢?这就是本文将要讲解的,基于汉字成词能力的HMM模型识别未登录词. 利用HMM模型进行分词,主要是将分词问题视为一个序列标注(…
什么是熵(Entropy) 简单来说,熵是表示物质系统状态的一种度量,用它老表征系统的无序程度.熵越大,系统越无序,意味着系统结构和运动的不确定和无规则:反之,,熵越小,系统越有序,意味着具有确定和有规则的运动状态.熵的中文意思是热量被温度除的商.负熵是物质系统有序化,组织化,复杂化状态的一种度量. 熵最早来原于物理学. 德国物理学家鲁道夫·克劳修斯首次提出熵的概念,用来表示任何一种能量在空间中分布的均匀程度,能量分布得越均匀,熵就越大. 一滴墨水滴在清水中,部成了一杯淡蓝色溶液 热水晾在空气中…
Nianwen Xue在<Chinese Word Segmentation as Character Tagging>中将中文分词视作为序列标注问题(sequence labeling problem),由此引入监督学习算法来解决分词问题. 1. HMM 首先,我们将简要地介绍HMM(主要参考了李航老师的<统计学习方法>).HMM包含如下的五元组: 状态值集合\(Q=\{q_1, q_2, \cdots, q_N\}\),其中\(N\)为可能的状态数: 观测值集合\(V=\{v_…
7.6 DNN在搜索场景中的应用 1. 背景 搜索排序的特征分大量的使用了LR,GBDT,SVM等模型及其变种.我们主要在特征工程,建模的场景,目标采样等方面做了很细致的工作.但这些模型的瓶颈也非常的明显,尽管现在阿里集团内部的PS版本LR可以支持到50亿特征规模,400亿的样本,但这对于我们来说,看起来依然是不太够的,现在上亿的item数据,如果直接使用id特征的话,和任意特征进行组合后,都会超出LR模型的极限规模,对于GBDT,SVM等模型的能力则更弱,而我们一直在思考怎么可以突破这种模型的…
HMM(隐马尔科夫模型)基本原理及其实现 HMM基本原理 Markov链:如果一个过程的“将来”仅依赖“现在”而不依赖“过去”,则此过程具有马尔可夫性,或称此过程为马尔可夫过程.马尔可夫链是时间和状态参数都离散的马尔可夫过程.HMM是在Markov链的基础上发展起来的,由于实际问题比Markov链模型所描述的更为复杂,观察到的时间并不是与状态一一对应的,而是通过一组概率分布相联系,这样的模型称为HMM.HMM是双重随机过程:其中之一是Markov链,这是基本随机过程,它描述状态的转移,是隐含的.…