fastutil优化数据结构使用示例】的更多相关文章

fastutil githup 链接 pom.xml文件引入依赖 <dependency> <groupId>fastutil</groupId> <artifactId>fastutil</artifactId> <version></version> </dependency> java原生数据结构与fastutil的对应关系,列出了比较常用的几个: List相关: List<Integer>…
概序: 要减少内存的消耗,除了使用高效的序列化类库以外,还有一个很重要的事情,就是优化数据结构.从而避免Java语法特性中所导致的额外内存的开销,比如基于指针的Java数据结构,以及包装类型. 有一个关键的问题,就是优化什么数据结构?其实主要就是优化你的算子函数,内部使用到的局部数据,或者是算子函数外部的数据.都可以进行数据结构的优化.优化之后,都会减少其对内存的消耗和占用. 一.如何优化数据结构?对集合的替换: 1.优先使用数组以及字符串,而不是集合类.也就是说,优先用array,而不是Arr…
Spark算子主要划分为两类:transformation和action,并且只有action算子触发的时候才会真正执行任务.还记得之前的文章<Spark RDD详解>中提到,Spark RDD的缓存和checkpoint是懒加载操作,只有action触发的时候才会真正执行,其实不仅是Spark RDD,在Spark其他组件如SparkStreaming中也是如此,这是Spark的一个特性之一.像我们常用的算子map.flatMap.filter都是transformation算子,而coll…
本文总结了使用Python进行机器视觉(图像处理)编程时常用的数据结构,主要包括以下内容: 数据结构 通用序列操作:索引(indexing).分片(slicing).加(adding).乘(multipying)等 列表:创建.list函数.基本操作:赋值.删除.分片赋值.插入.排序等 元组:创建.tuple函数.基本操作 NumPy数组:创建数组.创建图像.获取形状.维度.元素个数.元素类型.访问像素.通道分离.使用mask 原文与更新地址:blog.csdn.net/iracer/artic…
select * from tableA a left join tableB b on a.f_id = b.id; 索引建tableB表上面, 因为left join 注定左表全都有,所以应该关心右边: 结论: left join  索引 建右表; right join 索引建左表.…
转自:http://tech.meituan.com/spark-tuning-basic.html?from=timeline 前言 开发调优 调优概述 原则一:避免创建重复的RDD 原则二:尽可能复用同一个RDD 原则三:对多次使用的RDD进行持久化 原则四:尽量避免使用shuffle类算子 原则五:使用map-side预聚合的shuffle操作 原则六:使用高性能的算子 原则七:广播大变量 原则八:使用Kryo优化序列化性能 原则九:优化数据结构 资源调优 调优概述 Spark作业基本运行…
http://mp.weixin.qq.com/s?__biz=MjM5NDMwNjMzNA==&mid=2651805828&idx=1&sn=2f413828d1fdc6a64bdbb25c51508dfc&scene=2&srcid=0519iChOETxAx0OeGoHnm7Xk&from=timeline&isappinstalled=0#rd Spark性能优化指南——基础篇 2016-05-18 优才网 前言 在大数据计算领域,Spar…
Spark性能调优之代码方面的优化 1.避免创建重复的RDD     对性能没有问题,但会造成代码混乱   2.尽可能复用同一个RDD,减少产生RDD的个数   3.对多次使用的RDD进行持久化(cache,persist,checkpoint) 如何选择一种最合适的持久化策略?     默认MEMORY_ONLY, 性能很高, 而且不需要复制一份数据的副本,远程传送到其他节点上(BlockManager中的BlockTransferService),但是这里必须要注意的是,在实际的生产环境中,…
前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作,应用范围与前景非常广泛.在美团•大众点评,已经有很多同学在各种项目中尝试使用Spark.大多数同学(包括笔者在内),最初开始尝试使用Spark的原因很简单,主要就是为了让大数据计算作业的执行速度更快.性能更高. 然而,通过Spark开发出高性能的大数据计算作业,并不是那么简单的.如果没有对Spar…
本文转自:http://tech.meituan.com/spark-tuning-basic.html 感谢原作者 前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作,应用范围与前景非常广泛.在美团•大众点评,已经有很多同学在各种项目中尝试使用Spark.大多数同学(包括笔者在内),最初开始尝试使用Spark的原因很简单,主要就是为了让大数据计算…