pytorch随机梯度下降法1.梯度.偏微分以及梯度的区别和联系(1)导数是指一元函数对于自变量求导得到的数值,它是一个标量,反映了函数的变化趋势:(2)偏微分是多元函数对各个自变量求导得到的,它反映的是多元函数在各个自变量方向上的变化趋势,也是标量:(3)梯度是一个矢量,是有大小和方向的,其方向是指多元函数增大的方向,而大小是指增长的趋势快慢. 2.在寻找函数的最小值的时候可以利用梯度下降法来进行寻找,一般会出现以下两个问题局部最优解和铵点(不同自变量的变化趋势相反,一个处于极小,一个处于极大…
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补充>的是我自己加的内容而非课堂内容,参考文献列于文末.博主能力有限,若有错误,恳请指正: #---------------------------------------------------------------------------------# 这一周的内容是机器学习介绍和梯度下降法.作为入…
网上对于线性回归的讲解已经很多,这里不再对此概念进行重复,本博客是作者在听吴恩达ML课程时候偶然突发想法,做了两个小实验,第一个实验是采用最小二乘法对数据进行拟合, 第二个实验是采用梯度下降方法对数据集进行线性拟合,下面上代码: 最小二乘法: #!/usr/bin/env python #encoding:UTF-8 import numpy as np import matplotlib.pyplot as plt N=10 X=np.linspace(-3, 3, N) Y=(X+10.0)…
梯度下降法(gradient descent),又名最速下降法(steepest descent)是求解无约束最优化问题最常用的方法,它是一种迭代方法,每一步主要的操作是求解目标函数的梯度向量,将当前位置的负梯度方向作为搜索方向(因为在该方向上目标函数下降最快,这也是最速下降法名称的由来).梯度下降法特点:越接近目标值,步长越小,下降速度越慢.直观上来看如下图所示: 这里每一个圈代表一个函数梯度,最中心表示函数极值点,每次迭代根据当前位置求得的梯度(用于确定搜索方向以及与步长共同决定前进速度)和…
迭代方法图(图 1)包含一个标题为“计算参数更新”的华而不实的绿框.现在,我们将用更实质的方法代替这种华而不实的算法. 假设我们有时间和计算资源来计算 w1 的所有可能值的损失.对于我们一直在研究的回归问题,所产生的损失与 w1 的图形始终是凸形.换言之,图形始终是碗状图,如下所示: 图 2. 回归问题产生的损失与权重图为凸形. 凸形问题只有一个最低点:即只存在一个斜率正好为 0 的位置.这个最小值就是损失函数收敛之处. 通过计算整个数据集中 w1 每个可能值的损失函数来找到收敛点这种方法效率太…
最近回顾神经网络的知识,简单做一些整理,归档一下神经网络优化算法的知识.关于神经网络的优化,吴恩达的深度学习课程讲解得非常通俗易懂,有需要的可以去学习一下,本人只是对课程知识点做一个总结.吴恩达的深度学习课程放在了网易云课堂上,链接如下(免费): https://mooc.study.163.com/smartSpec/detail/1001319001.htm 神经网络最基本的优化算法是反向传播算法加上梯度下降法.通过梯度下降法,使得网络参数不断收敛到全局(或者局部)最小值,但是由于神经网络层…
在此记录使用matlab作梯度下降法(GD)求函数极值的一个例子: 问题设定: 1. 我们有一个$n$个数据点,每个数据点是一个$d$维的向量,向量组成一个data矩阵$\mathbf{X}\in \mathbb{R}^{n\times d}$,这是我们的输入特征矩阵. 2. 我们有一个响应的响应向量$\mathbf{y}\in \mathbb{R}^n$. 3. 我们将使用线性模型来fit上述数据.因此我们将优化问题形式化成如下形式:$$\arg\min_{\mathbf{w}}f(\math…
应用场景 优化算法经常被使用在各种组合优化问题中.我们可以假定待优化的函数对象\(f(x)\)是一个黑盒,我们可以给这个黑盒输入一些参数\(x_0, x_1, ...\),然后这个黑盒会给我们返回其计算得到的函数值\(f(x_0), f(x_1), ...\).我们的最终目的是得到这个黑盒函数的最优输入参数\(x_i\),使得\(f(x_i)=min\{f(x)\}\).那么我们就会想到,通过不断的调整输入给黑盒的\(x\)值,直到找到满足要求的那个\(x\)值. 我们需要明确的一个信息是,我们…
在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练.其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点. 下面我们以线性回归算法来对三种梯度下降法进行比较. 一般线性回归函数的假设函数为: $h_{\theta}=\sum_{j=0}^{n}\theta_{j}x_{j}$ 对应的能量函数(损失函数)形式为: $J_{train}(\theta)=1/(2m)\sum_{i=1}^{m}(h_{\theta}(x^{(i)})-y^{(i)})^{2}$…
机器学习基础--梯度下降法(Gradient Descent) 看了coursea的机器学习课,知道了梯度下降法.一开始只是对其做了下简单的了解.随着内容的深入,发现梯度下降法在很多算法中都用的到,除了之前看到的用来处理线性模型,还有BP神经网络等.于是就有了这篇文章. 本文主要讲了梯度下降法的两种迭代思路,随机梯度下降(Stochastic gradient descent)和批量梯度下降(Batch gradient descent).以及他们在python中的实现. 梯度下降法 梯度下降是…