写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT 后来做了 HDU 4035 终于会了.... 感谢 雕哥的帮助 !!! 题意 #2542. 「PKUWC 2018」随机游走 题解 原本的模型好像我不会那个暴力dp .... 就是直接统计点集中最后经过的点的期望 , 也就是点集中到所有点步数最大值的期望 . (也许可以列方程高斯消元 ? 似乎没分)…
哇我太菜啦555555 不妨钦定我们需要访问的点集为$S$,在$S$已知的情况下,我们令$f(x) $表示从$x$走到点集$S$中任意一点的期望步数. 若$x∈S$,则显然$f(x)=0$,否则$f[x]=\frac{1}{d[x]}\sum f[ch[x]]+1$.其中$d[x]$表示与$x$相连的节点个数,$ch[x]$为与$x$相连的节点. 然后就列出了$n$条式子,显然是一个$n$元一次方程,可以考虑用高斯消元去求解,这样时间复杂度是$O(n^32^{n})$,只能拿$60$分(然而我考…
题目:https://loj.ac/problem/2542 因为走到所有点的期望就是所有点期望的最大值,所以先最值反演一下,问题变成从根走到一个点集任意一点就停止的期望值: 设 \( f[x] \),则 \( f[x] = \frac{f[fa]+1+\sum\limits_{v \in son} (f[v]+1)}{d[x]} \),其中 \( d[x] \) 是 \( x \) 的度数: 因为其实只和 \( fa \) 有关,所以套路是设 \( f[x] = K[x] * f[fa] +…
题意 LOJ #2540. 「PKUWC 2018」随机算法 题解 朴素的就是 \(O(n3^n)\) dp 写了一下有 \(50pts\) ... 大概就是每个点有三个状态 , 考虑了但不在独立集中 , 考虑了并且在独立集中 , 还没考虑 . 转移就很显然了 qwq 然后要优化嘛 , 把其中两个状态合起来 , 也就是分成考虑了和没考虑了的两种 . 其中考虑了的那种 , 只会存在两种状态 , 要么是在独立集内 , 要么就是与独立集联通 , 没有考虑的 绝对不和独立集联通 就行了 . 然后我们枚举…
题目描述 有一棵 \(n\) 个点的树.你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一直随机游走,直到点集 \(S\) 中所有点都至少经过一次的话,期望游走几步. 特别地,点 \(x\)(即起点)视为一开始就被经过了一次. 答案对 \(998244353\) 取模. 题解 这道题要求点集 \(S\) 中所有点都至少经过一次的期望步数,直接做不好做,要先用一个 min-max 容斥转换…
搞了一下午 真的是啥都不会 首先这道题要用到Min-Max容斥 得到的结论是 设 $Max(S)$表示集合里最晚被访问的节点被访问的期望步数 设 $Min(S)$表示集合里最早被访问的节点被访问的期望步数 那么$ Max(S) = ∑_{T \in S} {-1^ { \lvert T \rvert+1} }Min(T)$ (这个相关的证明和理解可以看看HDU4336 附一个题解) 考虑对于一个集合$S$如何计算$Min(S)$ 记$d_u$为点$u$的度数 当$u\notin S \space…
题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_i\) , \(B\) 是已死猎人的 \(w_i\) 的总和 , \(P_i\) 是 \(i\) 当前要被杀死的概率 ... (抄博客咯) 不难有 \(\displaystyle P_i = \frac{w_i}{A-B} \tag{1}\) 如果 不考虑猎人死没死 , 都能被当做目标 qwq (鞭…
Update on 1.5 学了 zhou888 的写法,真是又短又快. 并且空间是 \(O(n)\) 的,速度十分优秀. 题意 LOJ #2538. 「PKUWC 2018」Slay the Spire 题解 首先我们考虑拿到一副牌如何打是最优的,不难发现是将强化牌从大到小能打就打,最后再从大到小打攻击牌 . 为什么呢 ? 证明(简单说明) : 如果不是这样 , 那么我们就是有强化牌没有用 , 且攻击牌超过两张 . 我们考虑把最小的那张攻击牌拿出来 , 然后放入一张强化牌 . \(\becau…
题目传送门 https://loj.ac/problem/2542 题解 肯定一眼 MinMax 容斥吧. 然后问题就转化为,给定一个集合 \(S\),问期望情况下多少步可以走到 \(S\) 中的点. 考虑 dp 的话,令 \(dp[x]\) 表示从 \(x\) 开始走的答案. 如果 \(x \in S\),那么 \(dp[x] = 0\): 否则,\(dp[x] = 1 + \frac{\sum\limits_{(x, y) \in T} dp[y]}{deg_x}\). 这个东西直接树上高斯…
题意 小 \(C\) 有一棵 \(n\) 个结点的有根树,根是 \(1\) 号结点,且每个结点最多有两个子结点. 定义结点 \(x\) 的权值为: 1.若 \(x\) 没有子结点,那么它的权值会在输入里给出,保证这类点中每个结点的权值互不相同. 2.若 \(x\) 有子结点,那么它的权值有 \(p_x\) 的概率是它的子结点的权值的最大值,有 \(1-p_x\) 的概率是它的子结点的权值的最小值. 现在小 \(C\) 想知道,假设 \(1\) 号结点的权值有 \(m\) 种可能性,权值第 \(i…