首先安装pyltp pytlp项目首页 单例类(第一次调用时加载模型) class Singleton(object): def __new__(cls, *args, **kwargs): if not hasattr(cls, '_the_instance'): cls._the_instance = object.__new__(cls, *args, **kwargs) return cls._the_instance 使用pyltp提取地址 import os from pyltp i…
近几年来,基于神经网络的深度学习方法在计算机视觉.语音识别等领域取得了巨大成功,另外在自然语言处理领域也取得了不少进展.在NLP的关键性基础任务—命名实体识别(Named Entity Recognition,NER)的研究中,深度学习也获得了不错的效果. 开源地址:https://github.com/xiaosongshine/NLP_NER_RNN_Keras 目录 0.概念讲解 0.1 NER 简介 0.2 深度学习方法在NER中的应用 2.编程实战 2.1 概述 2.2数据预处理 2.…
概述 命名实体识别在NLP的应用中也是非常广泛的,尤其是是information extraction的领域.Named Entity Recognition(NER) 的应用中,最常用的一种算法模型是隐式马可夫模型(Hidden Markov Modelling)- HMM.本节内容主要是通过介绍HMM的原理,以及应用HMM来做一个NER的实例演示. HMM原理解析 在解释HMM的原理之前,先引用几个HMM的基本概念,第一个是就是隐式状态,在本文中用H表示: 第二个就是显式状态,在本文中用大写…
文本情感分类: 文本情感分类采用LSTM的最后一层输出 比如双层的LSTM,使用正向的最后一层和反向的最后一层进行拼接 def forward(self,input): ''' :param input: :return: ''' input_embeded = self.embedding(input) #[batch_size,seq_len,200] output,(h_n,c_n) = self.lstm(input_embeded) out = torch.cat(h_n[-1,:,:…
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/broccoli2/article/details/84025285需求说明:(1)将计算机本地文档集中的文本进行分词.词性标注,最后进行命名实体识别.(2)将(1)中处理结果保存到本地txt文件中. 技术选择:本需求的实现使用了哈工大的pyltp,如果你对ltp还不太了解,请点击这里或者去哈工大语言云官网了解相关内容. 完整代码展示: #…
神经网络结构在命名实体识别(NER)中的应用 近年来,基于神经网络的深度学习方法在自然语言处理领域已经取得了不少进展.作为NLP领域的基础任务-命名实体识别(Named Entity Recognition,NER)也不例外,神经网络结构在NER中也取得了不错的效果.最近,我也阅读学习了一系列使用神经网络结构进行NER的相关论文,在此进行一下总结,和大家一起分享学习. 1 引言 命名实体识别(Named Entity Recognition,NER)就是从一段自然语言文本中找出相关实体,并标注出…
命名实体识别(Named Entity Recognition,NER)就是从一段自然语言文本中找出相关实体,并标注出其位置以及类型,如下图.它是NLP领域中一些复杂任务(例如关系抽取,信息检索等)的基础. NER一直是NLP领域中的研究热点,从早期基于词典和规则的方法,到传统机器学习的方法,到近年来基于深度学习的方法,NER研究进展的大概趋势大致如下图所示. 在基于机器学习的方法中,NER被当作是序列标注问题.与分类问题相比,序列标注问题中当前的预测标签不仅与当前的输入特征相关,还与之前的预测…
本篇文章,将带你一步步的安装文本标注工具brat. brat是一个文本标注工具,可以标注实体,事件.关系.属性等,只支持在linux下安装,其使用需要webserver,官方给出的教程使用的是Apache2. 使用示例…
中文分词把文本切分成词语,还可以反过来,把该拼一起的词再拼到一起,找到命名实体. 概率图模型条件随机场适用观测值条件下决定随机变量有有限个取值情况.给定观察序列X,某个特定标记序列Y概率,指数函数 exp(∑λt+∑μs).符合最大熵原理.基于条件随机场命名实体识别方法属于有监督学习方法,利用已标注大规模语料库训练. 命名实体的放射性.命名实体的前后词. 特征模板,当前位置前后n个位置字/词/字母/数字/标点作为特征,基于已经标注好语料,词性.词形已知.特征模板选择和具体识别实体类别有关. 命名…
  本文将会简单介绍自然语言处理(NLP)中的命名实体识别(NER).   命名实体识别(Named Entity Recognition,简称NER)是信息提取.问答系统.句法分析.机器翻译等应用领域的重要基础工具,在自然语言处理技术走向实用化的过程中占有重要地位.一般来说,命名实体识别的任务就是识别出待处理文本中三大类(实体类.时间类和数字类).七小类(人名.机构名.地名.时间.日期.货币和百分比)命名实体.   举个简单的例子,在句子"小明早上8点去学校上课."中,对其进行命名实…