题意:有K个棋子在一个大小为N×N的棋盘.一开始,它们都在棋盘的顶端,它们起始的位置是 (1,a1),(1,a2),...,(1,ak) ,它们的目的地是 (n,b1),(n,b2),...,(n,bk). 一个位于 (r,c) 的棋子每一步只能向右走到 (r,c+1) 或者向下走到 (r+1,c) . 我们把 i 棋子从 (1,ai) 走到 (n,bi) 的路径记作 pi . 你的任务是计算有多少种方案把n个棋子送到目的地,并且对于任意两个不同的棋子 i,j ,使得路径 pi 与 pj 不相交…
题目链接 题意 : 给定方格中第一行的各个起点.再给定最后一行与起点相对应的终点.问你从这些起点出发到各自的终点.不相交的路径有多少条.移动方向只能向下或向右 分析 : 首先对于多起点和多终点的不相交路径.有一个LGV定理 实际上就是 n^2 构造矩阵.再计算其行列式 矩阵的构造方法可以看看这个 ==> Click here 那么接下来就是确定各自路径的方案数了 这是一个经典问题 这里需要求解组合数.用预处理阶乘逆元的方法即可求出 #include<bits/stdc++.h> #def…
题意 给出\(n*n\)网格\((n<=10^5)\) 顶部有\(K\)个起点,底部有\(K\)个相对应的终点 每次只能向下或向右走 求有多少种从各个起点出发到达对应终点且路径不相交的路径? 对\(10^9 + 7\)取模 题解 按照组合数的套路 二维空间从一个h * w的矩形左上角走到右下角只向下或向右走的方案数为\(C_{h + w}^{h}\) 这题直接求不好求,我们考虑容斥 可以发现,如果两个路径相交,就相当于交换了终点 那么我们枚举每个起点的终点,乘上一个容斥系数\((-1)^t\),…
题目描述 n个人在w*h的监狱里面想要逃跑,已知他们的同伙在坐标(bi,h)接应他们,他们现在被关在(ai,1)现在他们必须要到同伙那里才有逃出去的机会,这n个人又很蠢只会从(x,y)->(x+1,y),(x,y+1)并且这他们走过的路径不能相交如果相交第一个经过后就会有第二个人经过时候就会有一名狱警在那等他,第二个人就会被抓,假设他们不会同时踩到某个格子,那么他们的逃跑路线有多少不同的方案数.如果两个方案不同那么存在一个人踩的格子至少有一个是另外一个方案的没踩过 输入 第一行一个t(t<=2…
又是一个看起来神奇无比的东东,证明是不可能证明的,这辈子不可能看懂的,知道怎么用就行了,具体看wikihttps://en.wikipedia.org/wiki/Lindstr%C3%B6m%E2%80%93Gessel%E2%80%93Viennot_lemma LGV定理就是求n个起点到n个终点(且一个起点对应一个终点)的不相交路径数目的一种方法,光看这句话不好理解,来看一道cf题 CodeForces - 348D Turtles 这道题给你一个n*m的矩阵(1~n, 1~m),现在有两只…
LGV定理用于解决路径不相交问题. 定理 有 \(n\) 个起点 \(1, 2, 3, ..., n\),它们 分别对应 要到 \(n\) 个终点 \(A, B, C, ..., X\),并且要求路径点不相交.求方案数. 设 \(e_{i, W}\) 表示从起点 \(i\) 到终点 \(W\) 的方案数.则最终答案为: \[\begin{vmatrix} e_{1, A} & e_{1,B} & ... & e_{1, X}\\ e_{2, A} & e_{2, B} &a…
题意:两只乌龟从1 1走到n m,只能走没有'#'的位置,问你两只乌龟走的时候不见面的路径走法有几种 思路:LGV定理模板.但是定理中只能从n个不同起点走向n个不同终点,那么需要转化.显然必有一只从1, 2走到 n - 1, m,另一只从2, 1走到 n, m - 1. 代码: #include<cmath> #include<set> #include<map> #include<queue> #include<cstdio> #include…
先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N integers a 1, a 2, -, a N, and M, K. She says each integers 1 ≤ a i ≤ M. And now Alice wants to ask for each d = 1 to M, how many different sequences b…
https://blog.csdn.net/qq_37025443/article/details/86537261 博客 下面是wiki上的讲解,建议耐心地看一遍...虽然看了可能还是不懂 https://en.wikipedia.org/wiki/Lindström–Gessel–Viennot_lemma Lindström–Gessel–Viennot lemma定理是 起点集合A=(a1,a2,a3..an),终点集合B=(b1.b2,b3,..bn) 假定P是从一条从一个点到另一个点…
瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 205    Accepted Submission(s): 109 Problem Description 有一个无限大的矩形,初始时你在左上角(即第一行第一列),每次你都可以选择一个右下方格子,并瞬移过去(如从下图中的红色格子能直接瞬移到蓝色格子),求到第n行第m列的格子有几种…