二类分类器svm 的loss function 是 hinge loss:L(y)=max(0,1-t*y),t=+1 or -1,是标签属性. 对线性svm,y=w*x+b,其中w为权重,b为偏置项,在实际优化中,w,b是待优化的未知,通过优化损失函数,使得loss function最小,得到优化接w,b. 对于logistic regression 其loss function是,由于y=1/(1+e^(-t)),则L=sum(y(log(h))+(1-y)log(1-h))…
目录 Calculating a Probability Model Training 1.Loss function for Logistic Regression 2.Regularization in Logistic Regression Glossay Calculating a Probability Many problems require a probability estimate as output. Logistic regression is an extremely…
Hinge Loss 解释 SVM 求解使通过建立二次规划原始问题,引入拉格朗日乘子法,然后转换成对偶的形式去求解,这是一种理论非常充实的解法.这里换一种角度来思考,在机器学习领域,一般的做法是经验风险最小化 ERM ,即构建假设函数为输入输出间的映射,然后采用损失函数来衡量模型的优劣.求得使损失最小化的模型即为最优的假设函数,采用不同的损失函数也会得到不同的机器学习算法,比如这里的主题 SVM 采用的是 Hinge Loss ,Logistic Regression 采用的则是负 $\log$…
This is the 2nd part of the series. Read the first part here: Logistic Regression Vs Decision Trees Vs SVM: Part I In this part we’ll discuss how to choose between Logistic Regression , Decision Trees and Support Vector Machines. The most correct ans…
Classification is one of the major problems that we solve while working on standard business problems across industries. In this article we’ll be discussing the major three of the many techniques used for the same, Logistic Regression, Decision Trees…
Hinge Loss 解释 SVM 求解使通过建立二次规划原始问题,引入拉格朗日乘子法,然后转换成对偶的形式去求解,这是一种理论非常充实的解法.这里换一种角度来思考,在机器学习领域,一般的做法是经验风险最小化 ERM ,即构建假设函数为输入输出间的映射,然后采用损失函数来衡量模型的优劣.求得使损失最小化的模型即为最优的假设函数,采用不同的损失函数也会得到不同的机器学习算法,比如这里的主题 SVM 采用的是 Hinge Loss ,Logistic Regression 采用的则是负 $\log$…
简述: 1. LR 本质上是对正例负例的对数几率做线性回归,因为对数几率叫做logit,做的操作是线性回归,所以该模型叫做Logistic Regression. 2. LR 的输出可以看做是一种可能性,输出越大则为正例的可能性越大,但是这个概率不是正例的概率,是正例负例的对数几率. 3. LR的label并不一定要是0和1,也可以是-1和1,或者其他,只是一个标识,标识负例和正例. 4. Linear Regression和Logistic Regression的区别: 这主要是由于线性回归在…
二分类:Logistic regression 多分类:Softmax分类函数 对于损失函数,我们求其最小值, 对于似然函数,我们求其最大值. Logistic是loss function,即: 在逻辑回归中,选择了 “对数似然损失函数”,L(Y,P(Y|X)) = -logP(Y|X). 对似然函数求最大值,其实就是对对数似然损失函数求最小值. Logistic regression, despite its name, is a linear model for classification…
Author: 相忠良(Zhong-Liang Xiang) Email: ugoood@163.com Date: Sep. 23st, 2017 根据 Andrew Ng 老师的深度学习课程课后作业及指导,参照吴老师代码完成了这个LR的coding. (重要)吴老师建议,数据应组织成下列形式,有利于扫除编程bug: X.shape = (n_x, m), n_x是样本维度,m是样本个数 Y.shape = (1, m) w, b应该分开,其中: b is a scaler w.shape =…