机器学习技法-GBDT算法】的更多相关文章

课程地址:https://class.coursera.org/ntumltwo-002/lecture 之前看过别人的竞赛视频,知道GBDT这个算法应用十分广泛.林在第八讲,简单的介绍了AdaBoost,这一讲会更深入的从优化的角度看AdaBoost,然后引出GBDT算法,最后林对最近几讲的集成学习模型(Aggregation Models)做了个很棒的总结. 一.RandomForest Vs AdaBoost-DTree RF随机森林算法:通过bootstrapping有放回的抽样获取不同…
一.前述 提升是一种机器学习技术,可以用于回归和分类的问题,它每一步产生弱预测模型(如决策树),并加权累加到总模型中:如果每一步的弱预测模型的生成都是依据损失函数的梯度方式的,那么就称为梯度提升(Gradient boosting)提升技术的意义:如果一个问题存在弱预测模型,那么可以通过提升技术的办法得到一个强预测模型. 二.算法过程 给定输入向量X和输出变量Y组成的若干训练样本(X 1 ,Y 1 ),(X 2 ,Y 2 )......(X n ,Y n ), 目标是找到近似函数F(X),使得损…
GBDT算法是一种监督学习算法.监督学习算法需要解决如下两个问题: 1.损失函数尽可能的小,这样使得目标函数能够尽可能的符合样本 2.正则化函数对训练结果进行惩罚,避免过拟合,这样在预测的时候才能够准确. GBDT算法需要最终学习到损失函数尽可能小并且有效的防止过拟合. 以样本随时间变化对某件事情发生的变化为例,如下几副图形象的说明了机器学习的作用. 假设随着时间的变化对K话题存在如下样本: 如果没有有效的正则化,则学习结果会如下图所示: 这种情况下,学习结果跟样本非常符合,损失函数也非常小,但…
机器学习中的算法(1)-决策树模型组合之随机森林与GBDT 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时, 单决策树又有一些不好的地方,比如说容易over-fitting,虽然有…
1 对决策树使用adaboost 对决策树使用adaboost时,有以下几个问题: (1)adaboost每次更新的样本权重如何应用到决策树中? 由于我们不知道决策树的err目标是什么,因此通常的方法是根据权重对样本采样,然后给决策树训练,这样我们不需要修改决策树算法本身,样本的权重信息就传进去了. (2)如果处理某个决策树的ε达到0的情况? 达到0时,相应的投票数变为无穷大,因此我们需要对树的强度做限制,使得ε不会为0.通常简单的做法是限制树的高度. 特别的,当树的高度被限制为1时,且不纯度定…
集成学习 集成算法 随机森林(前身是bagging或者随机抽样)(并行算法) 提升算法(Boosting算法) GBDT(迭代决策树) (串行算法) Adaboost (串行算法) Stacking ———————————————————————————————————————————— 集成算法  集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器. 弱分类器(weaklearner)指那些分类准确率只稍微好于随机猜测的分类器(准确率稍大于百分之50,可以是之前学过的逻辑…
1.优化模型的两种策略: 1)基于残差的方法 残差其实就是真实值和预测值之间的差值,在学习的过程中,首先学习一颗回归树,然后将“真实值-预测值”得到残差,再把残差作为一个学习目标,学习下一棵回归树,依次类推,直到残差小于某个接近0的阀值或回归树数目达到某一阀值.其核心思想是每轮通过拟合残差来降低损失函数. 总的来说,第一棵树是正常的,之后所有的树的决策全是由残差来决定. 2)使用梯度下降算法减小损失函数. 对于一般损失函数,为了使其取得最小值,通过梯度下降算法,每次朝着损失函数的负梯度方向逐步移…
GBDT算法原理深入解析 标签: 机器学习 集成学习 GBM GBDT XGBoost 梯度提升(Gradient boosting)是一种用于回归.分类和排序任务的机器学习技术,属于Boosting算法族的一部分.Boosting是一族可将弱学习器提升为强学习器的算法,属于集成学习(ensemble learning)的范畴.Boosting方法基于这样一种思想:对于一个复杂任务来说,将多个专家的判断进行适当的综合所得出的判断,要比其中任何一个专家单独的判断要好.通俗地说,就是"三个臭皮匠顶个…
Courses上台湾大学林轩田老师的机器学习技法课之Aggregation 模型学习笔记. 混合(blending) 本笔记是Course上台湾大学林轩田老师的<机器学习技法课>的学习笔记,用于学习之后的一些总结. 首先,对于Aggregation模型,其基本思想就是使用不同的 g t 来合成最后的预测模型 G t . 对于合成的方式主要有四种: 方法 数学描述 1. 选择.选择最值得可信的 g t 来当做最终的模型,而这个 gt 可以使用validation set 来进行选择 $$G(x)…
看完一篇介绍文章后,第一个直觉就是这算法已经配得上工业级属性.日前看到微软已经公开了这一算法,而且已经发开python版本,本人觉得等hadoop+Spark这些平台配齐之后,就可以大规模宣传啦~如果R包一发我一定要第一时间学习并更新在本帖下~ 哈哈 看好它是因为支持分布式.GPU运算,而且占用内存小,这几个特制已经足以让她从学界走到工业界,之前的XGboosting更多的使用场景在学术.竞赛.之前我也有写过,感觉局限挺多: R语言︱XGBoost极端梯度上升以及forecastxgb(预测)+…