Solution -「CF 1303G」Sum of Prefix Sums】的更多相关文章

\(\mathcal{Description}\)   Link.   在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\) 对车可以互相攻击.   的摆放方案数,对 \(998244353\) 取模.   \(n\le2\times10^5\). \(\mathcal{Solution}\)   这道<蓝题>嗷,看来兔是个傻子.   从第一个条件入手,所有格子可被攻击,那就有「每行都有车」或「每列都有车」成立.不妨…
\(\mathcal{Description}\)   Link.   定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarrow u<v\).求一个对 \(E\) 的染色 \(f\),使得 \(\not\exist \lang v_1,v_2,\cdots,v_{k+1} \rang, |\{f(v_i,v_{i+1})\mid i\in[1,k]\}|=1\),同时最小化 \(f\) 的值域大小.   \(2\le k…
题目 题意简述   link.   有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9+7\) 取模. 数据规模   \(n\le3\times10^4\). \(\text{Solution}\)   显然当 \(n<m\),答案为 \(0\),先特判掉.   首先列一个 naive 的 DP 方程,令 \(f(i,j)\) 为前 \(i\) 次操作选出的集合并大小为 \(j\)…
\(\mathcal{Description}\)   link.   给一个 \(n\) 个点 \(m\) 条边的无向图 \(G\).设图上有 \(k\) 个连通块,求出添加 \(k-1\) 条边使得这些连通块全部连通的方案数.对给定的 \(p\) 取模.   \(n,m\le10^5\). \(\mathcal{Solution}\)   \(\text{Prufer}\) 序列,设第 \(i\) 个连通块(可能是单点)的度数为 \(d_i\),大小为 \(s_i\).考虑连通块都是单点,方…
\(\mathcal{Description}\)   Link.   初始有一个有向图 \(G=(V,E)\),\(V=\{s,t\}\),\(E=\langle s,t\rangle\),一次操作定义为取任意 \(\langle u,v\rangle\in E\),设 \(w\) 为一个新结点,则令 \(V=V\cup\{w\}\),\(E=E\cup \{\langle u,w\rangle,\langle w,v\rangle\}\).现进行 \(n\) 次操作,求最终有多少个本质不同的…
\(\mathcal{Description}\)   Link.   给定 \(n\) 个点的竞赛图,第 \(i\) 个点代表了 \(s_i\) 个人,每个人(0-based)可能有真金条.此后在 \(t\) 时刻,对于图上任意边 \(\langle u,v\rangle\),若 \(u\) 中第 \(t\bmod s_u\) 个人有金条(无论真假),且 \(v\) 中第 \(t\bmod s_v\) 个人没有金条,那么后者获得一根假金条.   足够长的时间后,所有人开始卖金条.真金条必定能出…
\(\mathcal{Description}\)   Link.   给定一棵 \(n\) 个结点的树,边有边权,对于每个整数 \(x\in[0,n)\),求出最少的删边代价使得任意结点度数不超过 \(x\).   \(n\le2.5\times10^5\). \(\mathcal{Solution}\)   从单个询问入手,设此时 \(x\) 为常数,就有一个简单的树上 DP.令 \(f(u,0/1)\) 表示 \(u\) 点与父亲的边不断 / 断时,\(u\) 子树内的最小代价.以 \(f…
\(\mathcal{Description}\)   Link.   有 \(n\) 堆饼干,一开始第 \(i\) 堆有 \(a_i\) 块.每次操作从所有饼干中随机一块,将其随机丢到另外一堆.求所有饼干在一堆时的期望操作次数.答案对 \(998244353\) 取模.   \(n\le10^5\). \(\mathcal{Solution}\)   起手先把答案表示出来嘛,设 \(E_x\) 表示所有饼干第一次集中,且集中在 \(x\) 的期望步数.那么答案为 \[\sum_{i=1}^nE…
\(\mathcal{Description}\)   Link.   给定一个 \(n\) 个点 \(m\) 条边的无向图,在其上找到一条包括不少于 \(\lceil\frac{n}2\rceil\) 个结点的简单路径:或者将至少 \(\lceil\frac{n}2\rceil\) 个结点划分为若干二元组,使得任意两个不同二元组内四个结点的导出子图含有至多两条边.多组数据.   \(n,\sum n\le5\times10^5\),\(m,\sum m\le10^6\). \(\mathcal…
\(\mathscr{Description}\)   Link.   求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最大化 \(|S|\).   \(n\le10^6\). \(\mathscr{Solution}\)   爆搜打出 \(20\) 以内的表,发现 \(|S|\approx n\).先研究偶数 \(n=2k\): \[\begin{aligned} \prod_{i=1}^{2k} i! &= \le…