instance norm】的更多相关文章

bn一般就在conv之后并且后面再接relu 1.如果输入feature map channel是6,bn的gamma beta个数是多少个? 6个. 2.bn的缺点: BN会受到batchsize大小的影响.如果batchsize太小,算出的均值和方差就会不准确,如果太大,显存又可能不够用. 3.训练和测试时一般不一样,一般都是训练的时候在训练集上通过滑动平均预先计算好平均-mean,和方差-variance参数,在测试的时候,不再计算这些值,而是直接调用这些预计算好的来用,但是,当训练数据和…
深度神经网络难训练一个重要的原因就是深度神经网络涉及很多层的叠加,每一层的参数变化都会导致下一层输入数据分布的变化,随着层数的增加,高层输入数据分布变化会非常剧烈,这就使得高层需要不断适应低层的参数更新.为了训练好模型,我们需要谨慎初始化网络权重,调整学习率等. 本篇博客总结几种归一化办法,并给出相应计算公式和代码. 归一化层,目前主要有这几个方法,Batch Normalization(2015年).Layer Normalization(2016年).Instance Normalizati…
目录 Introduction BN LN IN GN SN Conclusion Introduction 输入图像shape记为[N, C, H, W] Batch Norm是在batch上,对NHW做归一化,就是对每个单一通道输入进行归一化,这样做对小batchsize效果不好: Layer Norm在通道方向上,对CHW归一化,就是对每个深度上的输入进行归一化,主要对RNN作用明显: Instance Norm在图像像素上,对HW做归一化,对一个图像的长宽即对一个像素进行归一化,用在风格…
Normalization(归一化) 写这一篇的原因是以前只知道一个Batch Normalization,自以为懂了.结果最近看文章,又发现一个Layer Normalization,一下就懵逼了.搞不懂这两者的区别.后来是不查不知道,一查吓一跳,Normalization的方法五花八门,Batch Normalization, Layer Normalization, Weight Normalization, Cosine Normalization, Instance Normaliza…
『教程』Batch Normalization 层介绍 知乎:详解深度学习中的Normalization,BN/LN/WN 一.两个概念 独立同分布(independent and identically distributed) 独立同分布的数据可以简化常规机器学习模型的训练.提升机器学习模型的预测能力 白化(whitening) 去除特征之间的相关性 —> 独立: 使得所有特征具有相同的均值和方差 —> 同分布. 二.问题 1.抽象程度高的层难以训练 深度神经网络涉及到很多层的叠加,而每一…
论文地址:https://arxiv.org/pdf/1406.2661.pdf 1.简介: GAN的两个模型 判别模型:就是图中右半部分的网络,直观来看就是一个简单的神经网络结构,输入就是一副图像,输出就是一个概率值,用于判断真假使用(概率值大于0.5那就是真,小于0.5那就是假),真假也不过是人们定义的概率而已. 生成模型:生成模型要做什么呢,同样也可以看成是一个神经网络模型,输入是一组随机数Z,输出是一个图像,不再是一个数值.从图中可以看到,会存在两个数据集,一个是真实数据集,这好说,另一…
Batch Normalization(简称 BN)自从提出之后,因为效果特别好,很快被作为深度学习的标准工具应用在了各种场合.BN 大法虽然好,但是也存在一些局限和问题,诸如当 BatchSize 太小时效果不佳.对 RNN 等动态网络无法有效应用 BN 等.针对 BN 的问题,最近两年又陆续有基于 BN 思想的很多改进 Normalization 模型被提出.BN 是深度学习进展中里程碑式的工作之一,无论是希望深入了解深度学习,还是在实践中解决实际问题,BN 及一系列改进 Normaliza…
来源:https://www.chainnews.com/articles/504060702149.htm 机器之心专栏 作者:张俊林 Batch Normalization (简称 BN)自从提出之后,因为效果特别好,很快被作为深度学习的标准工具应用在了各种场合.BN 大法虽然好,但是也存在一些局限和问题,诸如当 BatchSize 太小时效果不佳.对 RNN 等动态网络无法有效应用 BN 等.针对 BN 的问题,最近两年又陆续有基于 BN 思想的很多改进 Normalization 模型被…
GAN系列学习(1)——前生今世 DCGAN.WGAN.WGAN-GP.LSGAN.BEGAN原理总结及对比 [Learning Notes]变分自编码器(Variational Auto-Encoder,VAE) 2. GAN的原理: GAN的主要灵感来源于博弈论中零和博弈的思想,应用到深度学习神经网络上来说,就是通过生成网络G(Generator)和判别网络D(Discriminator)不断博弈,进而使G学习到数据的分布,如果用到图片生成上,则训练完成后,G可以从一段随机数中生成逼真的图像…
GAN:通过 将 样本 特征 化 以后, 告诉 模型 哪些 样本 是 黑 哪些 是 白, 模型 通过 训练 后, 理解 了 黑白 样本 的 区别, 再输入 测试 样本 时, 模型 就可以 根据 以往 的 经验 判断 是 黑 还是 白. 与 这些 分类 的 算法 不同, GAN 的 基本 原理 是, 有两 个 相生相克 的 模型 Generator 和 Discriminator,Generator 随机 生成 样本, Discriminator 将 真实 样本 标记 为 Real, 将 Gene…