这种以Boxfilter替代integral image 的方法很难使用到haar.LBP等特征检测中,因为像下面说的,它不支持多尺度,也就是说所提取的特征必须是同一个大小,最起码同一个宽高比的,这一点对宽高不定的haar特征.LBP特征都有很大的限制,但对于HOG特征因为尺度不像另外两个那样灵活,还是有迹可循的.采长补短 申明:以下非笔者原创,原文转载自:http://www.cnblogs.com/easymind223/archive/2012/11/13/2768680.html 这个项…
(一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合 SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal 在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM…
(一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合 SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal 在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM…
(一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思…
转自:http://blog.csdn.net/carson2005/article/details/8094699 Haar-like特征,即很多人常说的Haar特征,是计算机视觉领域一种常用的特征描述算子.它最早是由Papageorigiou等人用于人脸描述.目前常用的Haar-like特征可以分为三类:线性特征.边缘特征.点特征(中心特征).对角线特征.如下图所示: 显然,边缘特征有4种:x方向,y方向,x倾斜方向,y倾斜方向:线特征有8种,点特征有2种,对角线特征有1种.每一种特征的计算…
随着web的发展,网站资源的流量也变得越来越大.据统计,60%的网站流量均来自网站图片,可见对图片合理优化可以大幅影响网站流量,减小带宽消耗和服务器压力. 一.现有web图片格式 我们先来看下现在常用的web图片的格式: 图片格式 支持透明 动画支持 压缩方式 浏览器支持 相对原图大小 适应场景 baseline-jpeg 不支持 不支持 有损 所有 由画质决定 所有通用场景 progressive-jpeg 不支持 不支持 有损 所有 由画质决定 所有通用场景, 渐进式加载 gif 支持 支持…
FastImageCache是Path团队开发的一个开源库,用于提升图片的加载和渲染速度,让基于图片的列表滑动 优化点 iOS从磁盘加载一张图片,使用UIImageVIew显示在屏幕上,需要经过以下步骤: 从磁盘拷贝数据到内核缓冲区 从内核缓冲区复制数据到用户空间 生成UIImageView,把图像数据赋值给UIImageView 如果图像数据为未解码的PNG/JPG,解码为位图数据 CATransaction捕获到UIImageView layer树的变化 主线程Runloop提交CATran…
1.Haar-like特征 Haar-like特征最早是由Papageorgiou等应用于人脸表示,Viola和Jones在此基础上,使用3种类型4种形式的特征. Haar特征分为三类:边缘特征.线性特征.中心特征和对角线特征,组合成特征模板.特征模板内有白色和黑色两种矩形,并定义该模板的特征值为白色矩形像素和减去黑色矩形像素和.Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等.但矩形特征只…
原地址:http://blog.csdn.net/watkinsong/article/details/7631241 目前因为做人脸识别的一个小项目,用到了AdaBoost的人脸识别算法,因为在网上找到的所有的AdaBoost的简介都不是很清楚,让我看看头脑发昏,所以在这里打算花费比较长的时间做一个关于AdaBoost算法的详细总结.希望能对以后用AdaBoost的同学有所帮助.而且给出了关于AdaBoost实现的一些代码.因为会导致篇幅太长,所以这里把文章分开了,还请见谅. 第二部分的地址请…
基于Haar特征Adaboost人脸检测级联分类 基于Haar特征Adaboost人脸检测级联分类,称haar分类器. 通过这个算法的名字,我们能够看到这个算法事实上包括了几个关键点:Haar特征.Adaboost.级联.理解了这三个词对该算法基本就掌握了. 1        算法要点 Haar分类器 = Haar-like特征 + 积分图方法 + AdaBoost +级联: Haar分类器算法的要点例如以下: a)        使用Haar-like特征做检測. b)       使用积分图…