OpenCV——颜色运算(二)】的更多相关文章

#ifndef PS_ALGORITHM_H_INCLUDED #define PS_ALGORITHM_H_INCLUDED #include <iostream> #include <string> #include "cv.h" #include "highgui.h" #include "cxmat.hpp" #include "cxcore.hpp" using namespace std;…
#ifndef PS_ALGORITHM_H_INCLUDED #define PS_ALGORITHM_H_INCLUDED #include <iostream> #include <string> #include "cv.h" #include "highgui.h" #include "cxmat.hpp" #include "cxcore.hpp" using namespace std;…
图片人脸检测 人脸检测使用到的技术是OpenCV,上一节已经介绍了OpenCV的环境安装,点击查看. 往期目录 视频人脸检测——Dlib版(六)OpenCV添加中文(五)图片人脸检测——Dlib版(四)视频人脸检测——OpenCV版(三)图片人脸检测——OpenCV版(二)OpenCV环境搭建(一)更多更新,欢迎访问我的github:https://github.com/vipstone/faceai 功能展示 识别一种图上的所有人的脸,并且标出人脸的位置,画出人眼以及嘴的位置,展示效果图如下:…
图像拼接在实际的应用场景很广,比如无人机航拍,遥感图像等等,图像拼接是进一步做图像理解基础步骤,拼接效果的好坏直接影响接下来的工作,所以一个好的图像拼接算法非常重要. 再举一个身边的例子吧,你用你的手机对某一场景拍照,但是你没有办法一次将所有你要拍的景物全部拍下来,所以你对该场景从左往右依次拍了好几张图,来把你要拍的所有景物记录下来.那么我们能不能把这些图像拼接成一个大图呢?我们利用opencv就可以做到图像拼接的效果! 比如我们有对这两张图进行拼接. 从上面两张图可以看出,这两张图有比较多的重…
import cv2 as cv import numpy as np # def draw_keypoints(img, keypoints): # for kp in keypoints: # x, y = kp.pt # cv.circle(img, (int(x), int(y)), 2, (0, 255, 0)) # 两张键盘图片,用于特征匹配 img1 = cv.imread('../images/keyboard1.jpg') img2 = cv.imread('../images…
opencv::卷积运算函数filter2D() 使用掩模板矩阵(kernel)计算每个像素值 与原图相比,没有黑边 int main(int argc, char** argv) { Mat srcImage = imread(STRPAHT2); //判断图像是否加载成功 if (srcImage.data) cout << "图像加载成功!" << endl << endl; else { cout << "图像加载失败!…
opencv图像初始化操作 #include<opencv2\opencv.hpp> #include<opencv2\highgui\highgui.hpp> using namespace std; using namespace cv; int main(int argc, char** argv) { //这些方式都是自己拥有独立的内存空间 Mat img1(2, 2, CV_8UC3, Scalar(0, 0, 255)); cout << img1 <…
图像的二值化: 与边缘检测相比,轮廓检测有时能更好的反映图像的内容.而要对图像进行轮廓检测,则必须要先对图像进行二值化,图像的二值化就是将图像上的像素点的灰度值设置为0或255,这样将使整个图像呈现出明显的黑白效果.在数字图像处理中,二值图像占有非常重要的地位,图像的二值化使图像中数据量大为减少,从而能凸显出目标的轮廓. 下面就介绍OpenCV中对图像进行二值化的关键函数——cvThreshold(). 函数功能:采用Canny方法对图像进行边缘检测函数原型:void cvThreshold( …
好久没写博客了,因为最近都忙着赶项目和打比赛==| 好吧,今天我打算写一篇关于使用opencv做皮肤检测的技术总结.那首先列一些现在主流的皮肤检测的方法都有哪些: RGB color space Ycrcb之cr分量+otsu阈值化 YCrCb中133<=Cr<=173 77<=Cb<=127 HSV中 7 基于椭圆皮肤模型的皮肤检测 opencv自带肤色检测类AdaptiveSkinDetector 那我们今天就来一一实现它吧! 方法一:基于RGB的皮肤检测 根据RGB颜色模型找…
在深度学习在图像识别任务上大放异彩之前,词袋模型Bag of Features一直是各类比赛的首选方法.首先我们先来回顾一下PASCAL VOC竞赛历年来的最好成绩来介绍物体分类算法的发展. 从上表我们可以发现,在2012年之前,词袋模型是VOC竞赛分类算法的基本框架,几乎所有算法都是基于词袋模型的,可以这么说,词袋模型在图像分类中统治了很多年.虽然现在深度学习在图像识别任务中的效果更胜一筹,但是我们也不要忘记在10年前,Bag of Features的框架曾经也引领过一个时代.那这篇文章就是要…