VGG网路结构】的更多相关文章

VGG网络的基本结构 如图所示,从A到E网络的深度是逐渐增加的,在A中有11个权重层(8个卷积层,3个全连接层),在E中有19个权重层(16个卷积层,3个全连接层),卷积层的宽度是十分小的,开始时在第一个卷积层只有64个filter,当经过最大池化后,倍增filter的个数,最后的卷积层是512个,在VGG中使用的filter的大小是3x3的,卷积的步长是1,空间填充的padding也是1,一共有5个最大池化层,使用的最大池化的池化区域的大小是2x2,步长也为2,是非重叠池化. 网络结构分析 由…
GitHub:https://github.com/pengcao/chinese_ocr https://github.com/xiaofengShi/CHINESE-OCR |-angle 基于VGG分类模型的文字方向检测预测|-bash 环境安装|----setup-python3.sh 安装python3环境|----setup-python3-cpu.sh 安装CPU环境|----setup-python3-gpu.sh 安装CPU环境|-crnn |-ctpn 基于CTPN模型的文本…
VGG AlexNet在Lenet的基础上增加了几个卷积层,改变了卷积核大小,每一层输出通道数目等,并且取得了很好的效果.但是并没有提出一个简单有效的思路. VGG做到了这一点,提出了可以通过重复使⽤简单的基础块来构建深度学习模型的思路. 论文地址:https://arxiv.org/abs/1409.1556 vgg的结构如下所示: 上图给出了不同层数的vgg的结构.也就是常说的vgg16,vgg19等等. VGG BLOCK vgg的设计思路是,通过不断堆叠3x3的卷积核,不断加深模型深度.…
VGG是一个很经典的CNN模型,接触深度学习的人大概都有所耳闻.VGG在2014年被提出并拿来参加ImageNet挑战赛,最终实现了92.3%的正确率,得到了当年的亚军.虽然多年过去,又有很多新模型被提出,但是由于VGG简单优美的结构和稳定的性能,它现在仍然被广泛学习和使用.由于对VGG的讨论网上已经有很多,本文简单介绍VGG的结构并探讨它给我们带来的启发. 一.网络结构 VGG的作者在论文中将它称为是Very Deep Convolutional Network,如上图所示的VGG16网络带权…
前面讲了LeNet.AlexNet和Vgg,这周来讲讲GoogLeNet.GoogLeNet是由google的Christian Szegedy等人在2014年的论文<Going Deeper with Convolutions>提出,其最大的亮点是提出一种叫Inception的结构,以此为基础构建GoogLeNet,并在当年的ImageNet分类和检测任务中获得第一,ps:GoogLeNet的取名是为了向YannLeCun的LeNet系列致敬. 关于深度网络的一些思考 在本系列最开始的几篇文…
ResNet, AlexNet, VGG, Inception: 理解各种各样的CNN架构 本文翻译自ResNet, AlexNet, VGG, Inception: Understanding various architectures of Convolutional Networks,原作者保留版权 卷积神经网络在视觉识别任务上的表现令人称奇.好的CNN网络是带有上百万参数和许多隐含层的“庞然怪物”.事实上,一个不好的经验规则是:网络越深,效果越好.AlexNet,VGG,Inceptio…
PPT 可以说是讲得相当之清楚了... deepsystems.io 中文翻译: https://zhuanlan.zhihu.com/p/24916786 图解YOLO YOLO核心思想:从R-CNN到Fast R-CNN一直采用的思路是proposal+分类 (proposal 提供位置信息, 分类提供类别信息)精度已经很高,但是速度还不行. YOLO提供了另一种更为直接的思路: 直接在输出层回归bounding box的位置和bounding box所属的类别(整张图作为网络的输入,把 O…
---------- android培训.java培训.期待与您交流! ---------- 一.网络模型概述 网络模型示意图: 说明: (1)数据的传输:在用户端,应用层的数据,经过层层封包,最后到物理层,通过网络发送到网络的另一端,再从物理层到应用层进行层层解包. (2)常用层的协议,包括:应用层的FTP和HTTP协议等:传输层的UDP和TCP等:网际层的IP等. (3)对于开发者来讲,一般处于传输层和网际层.对于用户,通常停留在应用层. 二.网络通讯要素 网络通讯要素,包括:IP地址.端口…
时间序列模型 时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征.这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺序的,同样大小的值改变顺序后输入模型产生的结果是不同的. 举个栗子:根据过去两年某股票的每天的股价数据推测之后一周的股价变化:根据过去2年某店铺每周想消费人数预测下周来店消费的人数等等 RNN 和 LSTM 模型 时间序列模型最常用最强大的的工具就是递归神经网络(recurrent neural n…
源码地址 https://github.com/stephen-v/tensorflow_vgg_classify 1. VGG介绍 1.1. VGG模型结构 1.2. VGG19架构 2. 用Tensorflow搭建VGG19网络 3. 训练网络 参考文献 1. VGG介绍 1.1. VGG模型结构 VGG网络是牛津大学Visual Geometry Group团队研发搭建,该项目的主要目的是证明增加网络深度能够在一定程度上提高网络的精度.VGG有5种模型,A-E,其中的E模型VGG19是参加…