python 机器学习 决策树】的更多相关文章

决策树(Decision Trees ,DTs)是一种无监督的学习方法,用于分类和回归. 优点:计算复杂度不高,输出结果易于理解,对中间值缺失不敏感,可以处理不相关的特征数据缺点:可能会产生过度匹配的问题适用数据类型:数值型和标称型 source code下载 https://www.manning.com/books/machine-learning-in-action 运行demo 重要参考学习:http://blog.csdn.net/dream_angel_z/article/detai…
前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库:https://github.com/Holy-Shine/Introduciton-2-ML-with-Python-notebook 系列教程总目录 Python机器学习基础教程 引子 导入必要的包 import numpy as np import matplotlib.pyplot as plt im…
前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库:https://github.com/Holy-Shine/Introduciton-2-ML-with-Python-notebook 系列教程总目录 Python机器学习基础教程 引子 先导入必要的包 import numpy as np import matplotlib.pyplot as plt i…
摘要:本部分对决策树几种算法的原理及算法过程进行简要介绍,然后编写程序实现决策树算法,再根据Python自带机器学习包实现决策树算法,最后从决策树引申至集成学习相关内容. 1.决策树 决策树作为一种常见的有监督学习算法,在机器学习领域通常有着不错的表现,决策树在生活中决策去做某件事时,会根据自己的经验考虑到多种因素,那么在程序逻辑中使用if~else的堆叠,决定最终结果的过程其实就算是决策树的一种体现,如下图(举个不太恰当的例子).学术一点来说,决策树就是根据以往发生的事的概率,来评估风险,作出…
声明:以下内容转载自平行宇宙. Python在科学计算领域,有两个重要的扩展模块:Numpy和Scipy.其中Numpy是一个用python实现的科学计算包.包括: 一个强大的N维数组对象Array: 比较成熟的(广播)函数库: 用于整合C/C++和Fortran代码的工具包: 实用的线性代数.傅里叶变换和随机数生成函数. SciPy是一个开源的Python算法库和数学工具包,SciPy包含的模块有最优化.线性代数.积分.插值.特殊函数.快速傅里叶变换.信号处理和图像处理.常微分方程求解和其他科…
reference: http://qxde01.blog.163.com/blog/static/67335744201368101922991/ Python在科学计算领域,有两个重要的扩展模块:Numpy和Scipy.其中Numpy是一个用python实现的科学计算包.包括: 一个强大的N维数组对象Array: 比较成熟的(广播)函数库: 用于整合C/C++和Fortran代码的工具包: 实用的线性代数.傅里叶变换和随机数生成函数. SciPy是一个开源的Python算法库和数学工具包,S…
python机器学习实战(二) 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7159775.html 前言 这篇notebook是关于机器学习中的决策树算法,内容包括决策树算法的构造过程,使用matplotlib库绘制树形图以及使用决策树预测隐形眼睛类型.  操作系统:ubuntu14.04(win也ok)   运行环境:anaconda-python2.7-jupyter notebook    参考书籍:机器学习实战和…
1. scikit-learn: Machine Learning in Python scikit-learn是一个基于NumPy, SciPy, Matplotlib的开源机器学习工具包,主要涵盖分类,回归和聚类算法, 例如SVM, 逻辑回归,朴素贝叶斯,随机森林,k-means等算法,代码和文档都非常不错,在许多Python项 目中都有应用. 官方主页:http://scikit-learn.org/ 2. Milk:Machine learning toolkit in Python M…
Python机器学习简介 第一章 让计算机从数据中学习 将数据转化为知识 三类机器学习算法 第二章 训练机器学习分类算法 透过人工神经元一窥早期机器学习历史 使用Python实现感知机算法 基于Iris数据集训练感知机模型 自适应线性神经元及收敛问题 Python实现自适应线性神经元 大规模机器学习和随机梯度下降 第三章 使用Scikit-learn进行分类器之旅 如何选择合适的分类器算法 scikit-learn之旅 逻辑斯蒂回归对类别概率建模 使用正则化解决过拟合 支持向量机 使用松弛变量解…
建议Ctrl+D保存到收藏夹,方便随时查看 人工智能(AI)学习资料库 Python机器学习简介 第一章 让计算机从数据中学习 将数据转化为知识 三类机器学习算法 第二章 训练机器学习分类算法 透过人工神经元一窥早期机器学习历史 使用Python实现感知机算法 基于Iris数据集训练感知机模型 自适应线性神经元及收敛问题 Python实现自适应线性神经元 大规模机器学习和随机梯度下降 第三章 使用Scikit-learn进行分类器之旅 如何选择合适的分类器算法 scikit-learn之旅 逻辑…