连通图(Tarjan算法) 专题总结】的更多相关文章

一.题目类型: 1.有向图的强连通分量: POJ1236 Network of Schools HDU1269 迷宫城堡 2.割点 & 割边: UESTC - 900 方老师炸弹 UVA315 Network UVA796 Critical Links HDU3394 Railway 3.无向图的边双联通分量: POJ3177 Redundant Paths HDU4612 Warm up HDU4738 Caocao's Bridges POJ3694 Network 4.无向图的点双联通分量…
poj2117 Electricity Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3603   Accepted: 1213 Description Blackouts and Dark Nights (also known as ACM++) is a company that provides electricity. The company owns several power plants, each of…
1. 割点与连通度 在无向连通图中,删除一个顶点v及其相连的边后,原图从一个连通分量变成了两个或多个连通分量,则称顶点v为割点,同时也称关节点(Articulation Point).一个没有关节点的连通图称为重连通图(biconnected graph).若在连通图上至少删去k 个顶点才能破坏图的连通性,则称此图的连通度为k. 关节点和重连通图在实际中较多应用.显然,一个表示通信网络的图的连通度越高,其系统越可靠,无论是哪一个站点出现故障或遭到外界破坏,都不影响系统的正常工作:又如,一个航空网…
引言 Tarjan算法是一个基于深度优先搜索的处理树上连通性问题的算法,可以解决,割边,割点,双连通,强连通等问题. 首先要明白Tarjan算法,首先要知道它能解决的问题的定义. 连通图 无向图 由双向边构成的图称之为连通图. 割点与桥 给定的无向图中删去节点x,无向图被分割成两个或两个以上的不相连子图,则称节点x为图的割点(割顶,关键点). 这是一个无向图,其中点4就是一个割点,去掉该点,图会变成,{1,2,3},{5,6}两个不连续的子图,如下图 给定的无向图中删去边e,无向图被分割成两个或…
[有向图强连通分量] 在有向图G中,如果两个 顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达.{5},{6}也分别是两个强连通分量. 大体来说有3中算法Kosaraju,Trajan,Gabow这三种!后续文章中将相继…
题目很简单就拿着这道题简单说说 有向图强连通分支的Tarjan算法 有向图强连通分支的Tarjan算法伪代码如下:void Tarjan(u) {dfn[u]=low[u]=++index//进行DFS,每发现一个新的点就对这个点打上时间戳,所以先找到的点时间戳越早,dfn[U]表示最早发现u的时间,low[u]表示u能到达的最早的时间戳.stack.push(u)//将U压入栈中for each (u, v) in E {if (v is not visted)//如果V点没有经历过DFS,则…
资料参考 Tarjan算法寻找有向图的强连通分量 基于强联通的tarjan算法详解 有向图强连通分量的Tarjan算法 处理SCC(强连通分量问题)的Tarjan算法 强连通分量的三种算法分析 Tarjan算法详解理解集合 ppt图解分析下载 强连通分量 强连通分量(strongly connected component)是图论中的概念.图论中,强连通图指每一个顶点皆可以经由该图上的边抵达其他的每一个点的有向图.意即对于此图上每一个点对(Va,Vb),皆存在路径Va→Vb以及Vb→Va.(若有…
一.基本概念 1.桥:是存在于无向图中的这样的一条边,如果去掉这一条边,那么整张无向图会分为两部分,这样的一条边称为桥无向连通图中,如果删除某边后,图变成不连通,则称该边为桥. 2.割点:无向连通图中,如果删除某点后,图变成不连通,则称该点为割点. 二:tarjan算法在求桥和割点中的应用 1.割点:1)当前节点为树根的时候,条件是“要有多余一棵子树”(如果这有一颗子树,去掉这个点也没有影响,如果有两颗子树,去掉这点,两颗子树就不连通了.) 2)当前节点U不是树根的时候,条件是“low[v]>=…
算法描述 tarjan算法思想:从一个点开始,进行深度优先遍历,同时记录到达该点的时间(dfn记录到达i点的时间),和该点能直接或间接到达的点中的最早的时间(low[i]记录这个值,其中low的初始值等于dfn).如图: 假设我们从1开始DFS,那么到达1的时间为1,到达2的时间为2,到达3的时间为3.同时,点1能直接或间接到达的点中,最小时间为1,点2能通过3间接到达点1,所以点2可到达最早的点时间为1,点3可以直接到达点1,故点3到达的最早的点的时间为1.).对于每一个没有被遍历到的点A,如…
参考资料传送门 http://blog.csdn.net/lyy289065406/article/details/6762370 http://blog.csdn.net/lyy289065406/article/details/6762432 http://blog.csdn.net/xinghongduo/article/details/6195337 题目链接 http://poj.org/problem?id=3177 题目大意:有F个牧场,1<=F<=5000,现在一个牧群经常需要…
Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载) 转载自:http://hi.baidu.com/lydrainbowcat/blog/item/2194090a96bbed2db1351de8.html 基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合. 3.点连…
/** 题目大意: 给你一个无向连通图,问加上一条边后得到的图的最少的割边数; 算法思想: 图的边双连通Tarjan算法+树形DP; 即通过Tarjan算法对边双连通缩图,构成一棵树,然后用树形DP求最长链,连接首尾即可;剩下的连通块即为所求答案; 算法思路: 对图深度优先搜索,定义DFN(u)为u在搜索树中被遍历到的次序号; 定义Low(u)为u或u的子树中能通过非父子边追溯到的最早的节点,即DFN序号最小的节点; 则有: Low(u)=Min { DFN(u), Low(v),(u,v)为树…
简介: 割边和割点的定义仅限于无向图中.我们可以通过定义以蛮力方式求解出无向图的所有割点和割边,但这样的求解方式效率低.Tarjan提出了一种快速求解的方式,通过一次DFS就求解出图中所有的割点和割边. 欢迎探讨,如有错误敬请指正 如需转载,请注明出处 http://www.cnblogs.com/nullzx/ 1. 割点与桥(割边)的定义 在无向图中才有割边和割点的定义 割点:无向连通图中,去掉一个顶点及和它相邻的所有边,图中的连通分量数增加,则该顶点称为割点. 桥(割边):无向联通图中,去…
无向图的双连通分量 定义:若一张无向连通图不存在割点,则称它为"点双连通图".若一张无向连通图不存在割边,则称它为"边双连通图". 无向图图的极大点双连通子图被称为"点双连通分量",记为"\(v-DCC\)".无向图图的极大边双连通子图被称为"边双连通分量",记为"\(e-DCC\)". 没错,万能的图论连通性算法\(Tarjan\)又来了. 预备知识 时间戳 图在深度优先遍历的过程中,…
无向图的割点与割边 定义:给定无相连通图\(G=(V,E)\) 若对于\(x \in V\),从图中删去节点\(x\)以及所有与\(x\)关联的边后,\(G\)分裂为两个或以上不连通的子图,则称\(x\)为\(G\)的割点. 若对于\(e \in E\),从图中删去边\(e\)之后,\(G\)分裂为两个不连通的子图,则称\(e\)为\(G\)的割边. 对于很多图上问题来说,这两个概念是很重要的.我们将探究如何求解无向图的割点与割边. 预备知识 时间戳 图在深度优先遍历的过程中,按照每一个节点第一…
从这里开始 预备知识 两个数组 Tarjan 算法的应用 求割点和割边 求点-双连通分量 求边-双连通分量 求强连通分量 预备知识 设无向图$G_{0} = (V_{0}, E_{0})$,其中$V_{0}$为定点集合,$E_{0}$为边集,设有向图$G_{1} = (V_{1}, E_{1})$,其中$V_{1}$为定点集合,$E_{1}$为边集. 无向图中的路径:如果存在一个顶点序列$v_{p},v_{i_{1}},\cdots,v_{i_{k}},v_{q}$,使得$\left ( v_{…
部分内容引自https://www.cnblogs.com/stxy-ferryman/p/7779347.html Tarjan算法不是一个算法而是一类算法 1.求取强连通分量 强连通分量————有向图的强连通子图 tarjan算法基于dfs,利用栈的思想,把下面所有的点都遍历完毕后,所能链接的最小祖先节点(可能没有),就是要寻找的强连通分量 所以我们需要dfn数组存储dfs的遍历顺序,low数组存储这个节点后所有的子孙节点所能到达的最小节点(dfn最小)值 为了能够得知构成这个强连通分量的所…
tarjan算法求图中的强连通子图的个数. #include<iostream> #include<stack> #include<queue> #include<string> #include<cstring> #include<algorithm> #include<cmath> # define maxn using namespace std; vector<int>wakaka[maxn]; sta…
1.桥:是存在于无向图中的这样的一条边,如果去掉这一条边,那么整张无向图会分为两部分,这样的一条边称为桥 也就是说 无向连通图中,如果删除某边后,图变成不连通,则称该边为桥 2.割点:无向连通图中,如果删除某点后,图变成不连通,则称该点为割点. 求取割点: 1>当前节点为树根的时候,条件是“要有多余一棵子树”(如果这有一颗子树,去掉这个点也没有影响,如果有两颗子树,去掉这点,两颗子树就不连通了. 2>当前节点U不是树根的时候,条件是“low[v]>=dfn[u]”,也就是在u之后遍历的点…
接上一节Tarjan算法初探(2):缩点 在此首先提出几个概念: 割点集合:一个无向连通图G 若删除它的一个点集 以及点集中所有点相连的边(任意一端在点集中)后 G中有点之间不再连通则称这个点集是它的一个割点集合 割边集合:一个无向连通图G 若删除它的一个边集 G中有点之间不再连通则称这个边集是它的一个割边集合 图的点联通度:无向连通图的最小割点集合中元素的个数是一张无向连通图的点连通度 图的边联通度:无向连通图的最小割边集合中元素的个数是一张无向连通图的边联通度 割点:如果一个无向连通图的点连…
关于基础知识的预备桥和割点.双联通分量.强连通分量,支配树.(并不会支配树) 关于有向图的Tarjan,是在熟悉不过的了,它的主要功能就是求强联通分量,缩个点,但是要注意一下构建新图的时候有可能出现重边(即使原图没有重边),他还时常和拓扑排序放在一起.eg: #include<cstdio> #include<cstring> #include<algorithm> <<)+],*xS=xB,*xT=xB; #define gtc (xS==xT&&…
基本概念 给定无向连通图G = (V, E)割点:对于x∈V,从图中删去节点x以及所有与x关联的边之后,G分裂为两个或两个以上不相连的子图,则称x为割点割边(桥)若对于e∈E,从图中删去边e之后,G分裂成两个不相连的子图,则称e为G的桥或割边 时间戳在图的深度优先遍历过程中,按照每个节点第一次被访问的时间顺序,依次给予N个节点1~N的整数标记,该标记被称为“时间戳”,记为dfn[x] 搜索树在无向连通图中任选一个节点出发进行深度优先遍历吗,每个节点只访问一次.所有发生递归的边(x, y)构成一棵…
本文转自:www.cnblogs.com/collectionne/p/6847240.html 供大家学习 前言:之前翻译过一篇英文的关于割点的文章(英文原文.翻译),但是自己还有一些不明白的地方,这里就再次整理了一下.有兴趣可以点我给的两个链接. 割点的概念 在无向连通图中,如果将其中一个点以及所有连接该点的边去掉,图就不再连通,那么这个点就叫做割点(cut vertex / articulation point). 例如,在下图中,0.3是割点,因为将0和3中任意一个去掉之后,图就不再连通…
题目描述 ›对于一个有向图顶点的子集S,如果在S内任取两个顶点u和v,都能找到一条从u到v的路径,那么就称S是强连通的.如果在强连通的顶点集合S中加入其他任意顶点集合后,它都不再是强连通的,那么就称S是原图的一个强连通分量(SCC: Strongly Connected Component).任意有向图都可以分解成若干不相交的强连通分量,这就是强连通分量分解.把分解后的强连通分量缩成一个顶点,就得到了一个DAG(有向无环图). 现在,请求一个有向图中强连通分量的个数 输入 第一行两个数V,E,表…
Tarjan算法是由Robert Tarjan(罗伯特·塔扬,不知有几位大神读对过这个名字) 发明的求有向图中强连通分量的算法. 预备知识:有向图,强连通. 有向图:由有向边的构成的图.需要注意的是这是Tarjan算法的前提和条件. 强连通:如果两个顶点可以相互通达,则称两个顶点 强连通(strongly connected).如果有向图G的每两个顶点都 强连通,称G是一个强连通图.非 强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components).…
Tarjan算法及其应用 引入 tarjan算法可以在图上求解LCA,强连通分量,双联通分量(点双,边双),割点,割边,等各种问题. 这里简单整理一下tarjan算法的几个应用. LCA http://www.cnblogs.com/mjtcn/p/6852646.html 强联通分量 有向图的 强联通:在一个有向图G里,设两个点 a b 发现,由a有一条路可以走到b,由b又有一条路可以走到a,我们就叫这两个顶点(a,b)强连通. 强连通图: 如果 在一个有向图G中,每两个点都强连通,我们就叫这…
本文可转载,转载请注明出处:www.cnblogs.com/collectionne/p/6847240.html .本文未完,如果不在博客园(cnblogs)发现此文章,请访问以上链接查看最新文章. 前言:之前翻译过一篇英文的关于割点的文章(英文原文.翻译),但是自己还有一些不明白的地方,这里就再次整理了一下.有兴趣可以点我给的两个链接. 割点的概念 在无向连通图中,如果将其中一个点以及所有连接该点的边去掉,图就不再连通,那么这个点就叫做割点(cut vertex / articulation…
题目描述 给出一个n个点,m条边的无向图,求图的割点. 关于割点 在无向连通图中,如果将其中一个点以及所有连接该点的边去掉,图就不再连通,那么这个点就叫做割点(cut vertex / articulation point). 题解 在一个无向图里的割点分为两种,第一种就是一棵树的根节点并且他的度要大于等于2,删去这个点他的子树就不连通了(如上图的1号点). 第二种就要用到tarjan算法的思想,tarjan求出每个点的dfs顺序,然后记录他子树中能访问到的dfn最早的点.如果一个点不为根且他的…
[时光蒸汽喵带你做专题]最近公共祖先 LCA (Lowest Common Ancestors)_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili tarjan LCA - YouTube Tarjan算法_LCA - A_Bo的博客 - CSDN博客 Tarjan离线算法求最近公共祖先(LCA) - 初学者 - CSDN博客 最近公共祖先(LCA) - riteme.site Fuzhou University OnlineJudge 1628 P3379 [模板]最近公共祖先(LCA) -…
由于对于这一块掌握的十分不好,所以在昨天做题的过程中一直困扰着我,好不容易搞懂了,写个小总结吧 qwq~ 割点 概念 在无向连通图中,如果将其中一个点以及所有连接该点的边去掉,图就不再连通,那么这个点就叫做割点 . 比如我们现在有一个图: 如果我们将 4 号节点及它的所有边全部删去,那么这个图就变得不再联通,所以 4 号点是一个割点: 同理,5 号节点也是一个割点: 怎么求割点 我们可以用 Tarjan 算法去求割点: 有两个关键的数组: dfn [ i ] :表示编号为 i 的点在 dfs 过…