LSA、LDA】的更多相关文章

(一)数据准备 1.爬取京东自营店kindle阅读器的评价数据,对数据进行预处理,使用机器学习算法对评价文本进行舆情分析,预测某用户对本商品的评价是好评还是差评.通过数据分析与模型分析,推测出不同型号(价格)的kindle具有的特征,并根据每种型号的特征向不同需求的顾客推荐.爬取的数据集中包括“评论”.“字数”.“评论的点赞数”.“评论的评论数”.“评论类型”五列,为了找出价值较高的数据.首先利用主成分分析的方法,将“字数”.“评论的点赞数”.“评论的评论数”作为输入变量,得到每条数据的权重,而…
 Latent semantic analysis (LSA) is a technique in natural language processing, in particular distributional semantics, of analyzing relationships between a set of documents and the terms they contain by producing a set of concepts related to the docu…
现在自然语言处理用深度学习做的比较多,我还没试过用传统的监督学习方法做分类器,比如SVM.Xgboost.随机森林,来训练模型.因此,用Kaggle上经典的电影评论情感分析题,来学习如何用传统机器学习方法解决分类问题. 通过这个情感分析的题目,我会整理做特征工程.参数调优和模型融合的方法,这一系列会有四篇文章.这篇文章整理文本特征工程的内容. 文本的特征工程主要包括数据清洗.特征构造.降维和特征选择等. 首先是数据清洗,比如去停用词.去非字母汉字的特殊字符.大写转小写.去掉html标签等. 然后…
四大机器学习降维算法:PCA.LDA.LLE.Laplacian Eigenmaps 机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中.降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式. y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的).f可能是显式的或隐式的.线性的或非线性的. 目前大部分降维算法处理向量表达的数据,也有一些降维算法处理高阶张量表达的数据.之所以使用降维…
一.特征向量/特征值 Av = λv 如果把矩阵看作是一个运动,运动的方向叫做特征向量,运动的速度叫做特征值.对于上式,v为A矩阵的特征向量,λ为A矩阵的特征值. 假设:v不是A的速度(方向) 结果如上,不能满足上式的. 二.协方差矩阵 方差(Variance)是度量一组数据分散的程度.方差是各个样本与样本均值的差的平方和的均值. 协方差(Covariance)是度量两个变量的变动的同步程度,也就是度量两个变量线性相关性程度.如果两个变量的协方差为0,则统计学上认为二者线性无关.而方差是协方差的…
1. LDA模型是什么 LDA可以分为以下5个步骤: 一个函数:gamma函数. 四个分布:二项分布.多项分布.beta分布.Dirichlet分布. 一个概念和一个理念:共轭先验和贝叶斯框架. 两个模型:pLSA.LDA. 一个采样:Gibbs采样 关于LDA有两种含义,一种是线性判别分析(Linear Discriminant Analysis),一种是概率主题模型:隐含狄利克雷分布(Latent Dirichlet Allocation,简称LDA),本文讲后者. 按照wiki上的介绍,L…
自然语言处理之LSA LSA(Latent Semantic Analysis), 潜在语义分析.试图利用文档中隐藏的潜在的概念来进行文档分析与检索,能够达到比直接的关键词匹配获得更好的效果. LSA的核心思想 假设有 nn 篇文档,这些文档中的单词总数为 mm (可以先进行分词.去词根.去停止词操作),我们可以用一个 m∗nm∗n的矩阵 XX 来表示这些文档,这个矩阵的每个元素 XijXij 表示第 ii 个单词在第 jj 篇文档中出现的次数(也可用tf-idf值).下文例子中得到的矩阵见下图…
最近在找降维的解决方案中,发现了下面的思路,后面可以按照这思路进行尝试下: 链接:http://www.36dsj.com/archives/26723 引言 机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中.降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式. y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的).f可能是显式的或隐式的.线性的或非线性的. 目前大部分降维算法…
转自github: https://github.com/heucoder/dimensionality_reduction_alo_codes 网上关于各种降维算法的资料参差不齐,同时大部分不提供源代码:在此通过借鉴资料实现了一些经典降维算法的Demo(python),同时也给出了参考资料的链接. 降维算法 资料链接 展示 PCA https://blog.csdn.net/u013719780/article/details/78352262 https://blog.csdn.net/we…
Word Embedding Word Embedding是一种词的向量表示,比如,对于这样的"A B A C B F G"的一个序列,也许我们最后能得到:A对应的向量为[0.1 0.6 -0.5],B对应的向量为[-0.2 0.9 0.7]. 之所以希望把每个单词变成一个向量,目的还是为了方便计算,比如"求单词A的同义词",就可以通过"求与单词A在cos距离下最相似的向量"来做到. 那么如何进行词嵌入呢?目前主要有三种算法: Embedding…