pytorch之Tensor】的更多相关文章

不是python层面Tensor的剖析,是C层面的剖析. 看pytorch下lib库中的TH好一阵子了,TH也是torch7下面的一个重要的库. 可以在torch的github上看到相关文档.看了半天才发现pytorch借鉴了很多torch7的东西. pytorch大量借鉴了torch7下面lua写的东西并且做了更好的设计和优化. https://github.com/torch/torch7/tree/master/doc pytorch中的Tensor是在TH中实现的.TH = torch…
#tensor和numpy import torch import numpy as np numpy_tensor = np.random.randn(3,4) print(numpy_tensor) #将numpy的ndarray转换到tendor上 pytorch_tensor1 = torch.Tensor(numpy_tensor) pytorch_tensor2 = torch.from_numpy(numpy_tensor) print(pytorch_tensor1) print…
转载自:(pytorch中tensor数据和numpy数据转换中注意的一个问题)[https://blog.csdn.net/nihate/article/details/82791277] 在pytorch中,把numpy.array数据转换到张量tensor数据的常用函数是torch.from_numpy(array)或者torch.Tensor(array),第一种函数更常用.下面通过代码看一下区别: import numpy as np import torch a=np.arange(…
原文地址:https://zhuanlan.zhihu.com/p/31494491 上次我总结了在PyTorch中建立随机数Tensor的多种方法的区别. 这次我把常用的Tensor的数学运算总结到这里,以防自己在使用PyTorch做实验时,忘记这些方法应该传什么参数. 总结的方法包括: Tensor求和以及按索引求和:torch.sum() torch.Tensor.indexadd() Tensor元素乘积:torch.prod(input) 对Tensor求均值.方差.极值: torch…
原文:https://blog.csdn.net/hustchenze/article/details/79154139 Pytorch的数据类型为各式各样的Tensor,Tensor可以理解为高维矩阵.与Numpy中的Array类似.Pytorch中的tensor又包括CPU上的数据类型和GPU上的数据类型,一般GPU上的Tensor是CPU上的Tensor加cuda()函数得到.通过使用Type函数可以查看变量类型.一般系统默认是torch.FloatTensor类型.例如data = to…
基本类型 torch.Tensor是一种包含单一数据类型元素的多维矩阵. Torch定义了七种CPU tensor类型和八种GPU tensor类型: Data tyoe CPU tensor GPU tensor 32-bit floating point torch.FloatTensor torch.cuda.FloatTensor 64-bit floating point torch.DoubleTensor torch.cuda.DoubleTensor 16-bit floatin…
pytorch张量数据类型入门1.对于pytorch的深度学习框架,其基本的数据类型属于张量数据类型,即Tensor数据类型,对于python里面的int,float,int array,flaot array对应于pytorch里面即在前面加一个Tensor即可——intTensor ,Float tensor,IntTensor of size [d1,d2...], FloatTensor of size[d1,d2,...]2.对于pytorch,并不能表示string类型的数据类型,一…
首先在变量的操作上:Tensor对象支持在原对象内存区域上修改数据,通过“+=”或者torch.add()方法而Variable不支持在原对象内存区域上修改数据Variable对象可求梯度,并且对Variable对象的操作,操作会被记录,可通过grad_fn属性查看上一次的操作,可通过data属性访问原始张量,grad can be implicitly created only for scalar outputs--------------------- 作者:头发光了你就强了 来源:CSD…
tensor默认是不求梯度的,对应的requires_grad是False. 1.指定数值初始化 import torch #创建一个tensor,其中shape为[2] tensor=torch.Tensor([2,3]) print(tensor)#tensor([2., 3.]) #创建一个shape为[2,3]的tensor tensor=torch.Tensor(2,3)#会随机数值,等价于这种方式 tensor=torch.Tensor(size=(2,3)) print(tenso…
import torch import numpy as np a = torch.tensor([[[1]]]) #只有一个数据的时候,获取其数值 print(a.item()) #tensor转化为nparray b = a.numpy() print(b,type(b),type(a)) #获取张量的形状 a = torch.tensor(np.arange(30).reshape(3,2,5)) print(a) print(a.shape) print(a.size()) print(…