探索机器学习,使用Scikit-Learn全程跟踪一个机器学习项目的例子:探索各种训练模型:使用TensorFlow库构建和训练神经网络,深入神经网络架构,包括卷积神经网络.循环神经网络和深度强化学习,学习可用于训练和缩放深度神经网络的技术. 主要分为两个部分.第一部分为第1章到第8章,涵盖机器学习的基础理论知识和基本算法--从线性回归到随机森林等,帮助读者掌握Scikit-Learn的常用方法:第二部分为第9章到第16章,探讨深度学习和常用框架TensorFlow,一步一个脚印地带领读者使用T…
机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中萃取有价值的信息或模式,成为各行业求生存.谋发展的决定性手段,这使得这一过去为分析师和数学家所专属的研究领域越来越为人们所瞩目. 入门建议参考<机器学习实战>,分为4个部分,分别是分类(有监督学习,包括KNN/决策树/朴素贝叶斯/逻辑斯蒂回归/svm/改变样本权重的bagging和adaboosting).回归(有监督学习,线性回归.局部加权.特征维度比样本个数多时缩减系数,如岭回归.lasso等,树回…
入门神经网络深度学习,推荐学习<深度学习入门:基于Python的理论与实现>,这本书不来虚的,一上来就是手把手教你一步步搭建出一个神经网络,还能把每一步的出处讲明白.理解神经网络,很容易就能入门. 深度学习真正意义上的入门书,深入浅出地剖析了深度学习的原理和相关技术.书中使用Python3,尽量不依赖外部库或工具,从基本的数学知识出发,带领读者从零创建一个经典的深度学习网络,使读者在此过程中逐步理解深度学习. 学习参考: <深度学习入门:基于Python的理论与实现>中文版PDF,…
这本书我看了电子版的,感觉还不错,全书共有20章,书中的简介如下: 本书旨在让你尽快学会 Python ,以便能够编写能正确运行的程序 -- 游戏.数据可视化和 Web 应用程序,同时掌握让你终身受益的基本编程知识.本书适合任何年龄的读者阅读,它不要求你有任何 Python 编程经验,甚至不要求你有编程经验.如果你想快速掌握基本的编程知识以便专注于开发感兴趣的项目,并想通过解决有意义的问题来检查你对新学概念的理解程度,那么本书就是为你编写的.本书还可供初中和高中教师用来通过开发项目向学生介绍编程…
下载:https://pan.baidu.com/s/1qKaDd9PSUUGbBQNB3tkDzw <机器学习实战:基于Scikit-Learn和TensorFlow>高清中文版PDF+高清英文版PDF+源代码 下载:https://pan.baidu.com/s/1IAfr-tigqGE_njrfSATT_w <深度学习之TensorFlow:入门.原理与进阶实战>,李金洪 著. 下载:https://pan.baidu.com/s/1NYYpsxbWBvMn9U7jvj6XS…
Excel是数据分析中最常用的工具,本书通过Python与Excel的功能对比介绍如何使用Python通过函数式编程完成Excel中的数据处理及分析工作.在Python中pandas库用于数据处理,我们从1787页的pandas官网文档中总结出最常用的36个函数,通过这些函数介绍如何通过Python完成数据生成和导入.数据清洗.预处理,以及最常见的数据分类,数据筛选,分类汇总,透视等最常见的操作. 学习推荐: <从Excel到Python数据分析进阶指南>高清中文版PDF,带目录,文字可以复制…
周志华<机器学习>高清电子书pdf下载地址 下载地址1:https://545c.com/file/20525574-415455837 下载地址2: https://pan.baidu.com/s/1m2yZsojL8Xd8cm9K5-b_AQ  提取码: 5nne      …
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的常见准则有: 1.      均方误差(mean squared error,MSE): 2.      平均绝对误差(mean absolute error,MAE) 3.      R2 score:scikit learn线性回归模型的缺省评价准则,既考虑了预测值与真值之间的差异,也考虑了问题…
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉验证 交叉验证用于评估模型性能和进行参数调优(模型选择).分类任务中交叉验证缺省是采用StratifiedKFold. sklearn.cross_validation.cross_val_score(estimator, X, y=None, scoring=None, cv=None, n_jo…
下载:https://pan.baidu.com/s/1oejHek3Vmu0ZYvp4w9ZLsw <Python 3网络爬虫开发实战>中文PDF+源代码 下载:https://pan.baidu.com/s/1BgQ54kCnGch4eaz4WuoC9w <精通Python爬虫框架Scrapy>中文PDF+英文PDF+源代码 更多资料:https://pan.baidu.com/s/1g4hv05UZ_w92uh9NNNkCaA <Python 3网络爬虫开发实战>…