机器学习——Day 2 简单线性回归】的更多相关文章

写在开头 由于某些原因开始了机器学习,为了更好的理解和深入的思考(记录)所以开始写博客. 学习教程来源于github的Avik-Jain的100-Days-Of-MLCode 英文版:https://github.com/Avik-Jain/100-Days-Of-ML-Code 中文翻译版:https://github.com/MLEveryday/100-Days-Of-ML-Code 本人新手一枚,所以学习的时候遇到不懂的会经常百度,查看别人的博客现有的资料.但是由于不同的人思维和写作风格…
一.机器学习基本概念 1.训练集和测试集 训练集(training set/data)/训练样例(training examples): 用来进行训练,也就是产生模型或者算法的数据集 测试集(testing set/data)/测试样例 (testing examples):用来专门进行测试已经学习好的模型或者算法的数据集 2.特征向量 特征向量(features/feature vector):属性的集合,通常用一个向量来表示,附属于一个实例 3.分类问题和回归问题 分类 (classific…
前文再续书接上一回,机器学习的主要目的,是根据特征进行预测.预测到的信息,叫标签. 从特征映射出标签的诸多算法中,有一个简单的算法,叫简单线性回归.本文介绍简单线性回归的概念. (1)什么是简单线性回归 "回归(regression)"是什么?如之前所讲,预测模型可区分为"分类器"跟"回归器",回归器,就是用来预测趋势变化的,比如预测明天哪支股会涨停,预测某天的降雨量是多少,预测未来一年房价的变化,等等.所以回归就是预测的意思,没有什么高深的.线…
记录下学习使用sklearn,将使用sklearn实现机器学习大部分内容 基于scikit-learn机器学习(第2版)这本书,和scikit-learn中文社区 简单线性回归 首先,最简单的线性回归也有几个地方要注意 fit的时候,对于X,要求是n*m的类型,y要是n*1的类型 sklearn会将得到的系数存储起来,分别在coef_中和intercept_中,intercept_是偏移,也就是b,coef_是k,或者向量中的W 来看具体例子 from sklearn.linear_model…
机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理) 作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是 机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位,毕竟在机器智能没达到人类水平之前,机器学习可以作为一种重要手段,而随着科技的 不断发展,相信这方面的人才需求也会越…
机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理) 转自http://www.cnblogs.com/tornadomeet/p/3395593.html 前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位,毕竟在机器智能没达到人类水平之前,机器学习可以作为一种重要手段,而随着科技的不断发展,相信这方面的人才需求也会越来越大…
写在开头 由于某些原因开始了机器学习,为了更好的理解和深入的思考(记录)所以开始写博客. 学习教程来源于github的Avik-Jain的100-Days-Of-MLCode 英文版:https://github.com/Avik-Jain/100-Days-Of-ML-Code 中文翻译版:https://github.com/MLEveryday/100-Days-Of-ML-Code 本人新手一枚,所以学习的时候遇到不懂的会经常百度,查看别人的博客现有的资料.但是由于不同的人思维和写作风格…
机器学习之五 正则化的线性回归-岭回归与Lasso回归 注:正则化是用来防止过拟合的方法.在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数.但是一直也无法对其基本原理有一个透彻.直观的理解.直到最近再次接触到这个概念,经过一番苦思冥想后终于有了我自己的理解. 0. 正则化(Regularization ) 前面使用多项式回归,如果多项式最高次项比较大,模型就容易出现过拟合.正则化是一种常见的防止过拟合的方法,一般原理是在代价函数后面加上一个对参数的约束项,…
和相关分析一样,回归分析也可以描述两个变量间的关系,但二者也有所区别,相关分析可以通过相关系数大小描述变量间的紧密程度,而回归分析更进一步,不仅可以描述变量间的紧密程度,还可以定量的描述当一个变量变化时,对另一个变量的影响程度,这是相关分析无法做到的,正因为如此,回归分析更多用来预测和控制变量值,但是回归分析并不等同于因果关系. 根据模型的不同可以分为线性回归和非线性回归 线性回归分析一般用线性模型来描述,和方差分析模型一样,只是各部分的叫法有所不同,回归模型分为常量.回归部分.残差常量就是所谓…
简单线性回归 线性回归是数据挖掘中的基础算法之一,从某种意义上来说,在学习函数的时候已经开始接触线性回归了,只不过那时候并没有涉及到误差项.线性回归的思想其实就是解一组方程,得到回归函数,不过在出现误差项之后,方程的解法就存在了改变,一般使用最小二乘法进行计算. 使用sklearn.linear_model.LinearRegression进行线性回归 sklearn对Data Mining的各类算法已经有了较好的封装,基本可以使用fit.predict.score来训练.评价模型,并使用模型进…