SVM神经网络的术语理解】的更多相关文章

SVM(Support Vector Machine)翻译成中文是支持向量机, 这里的“机(machine,机器)”实际上是一个算法.而支持向量则是指那些在间隔区边缘的训练样本点[1]. 当初看到这个定义关于支持向量还是不清楚,直到前两天好像突然明白了. 先看一种简单情形,二维问题的二分类问题,见下图   把我们要求的东西叙述一下,就是图中的H1和H2.好了,描述H1和H2只不过是两条直线而已,而只要给出直线上两个点就可以确定一条直线,图中的两条直线只需要四个点即可,这四个点就是所谓的支持向量.…
深度神经网路已经在语音识别,图像识别等领域取得前所未有的成功.本人在多年之前也曾接触过神经网络.本系列文章主要记录自己对深度神经网络的一些学习心得. 第二篇,讲讲经典的卷积神经网络.我不打算详细描述卷积神经网络的生物学运行机理,因为网络上有太多的教程可以参考.这里,主要描述其数学上的计算过程,也就是如何自己编程去实现的问题. 1. 概述 回想一下BP神经网络.BP网络每一层节点是一个线性的一维排列状态,层与层的网络节点之间是全连接的.这样设想一下,如果BP网络中层与层之间的节点连接不再是全连接,…
https://blog.csdn.net/shijing_0214/article/details/53143393 孔子说过,温故而知新,时隔俩月再重看CNNs,当时不太了解的地方,又有了新的理解与体会,特此记录下来.文章图片及部分素材均来自网络,侵权请告知. 卷积神经网络(Convolutinal Neural Networks)是非常强大的一种深度神经网络,它在图片的识别分类.NLP句子分类等方面已经获得了巨大的成功,也被广泛使用于工业界,例如谷歌将它用于图片搜索.亚马逊将它用于商品推荐…
在SVM中,我们的超平面参数最终只与间隔边界上的向量(样本)有关,故称为支持向量机. 求解最优超平面,即求最大化间隔,或最小化间隔的倒数:||w||2/2,约束条件为yi(wTxi+b)>=1 因为此函数为凸函数(拉格朗日乘子法的前提条件),可用拉格朗日乘子法转化为对偶问题,当满足KKT条件时,对偶问题=原始问题. 关于约束: 1. 目标函数极值点在约束范围内:此时不等式约束失效,问题即退化为无约束优化问题. 这个很好理解,函数只有一个极值点,如果在约束范围内,直接对函数求极值点即可. 2. 目…
主要记录了SVM思想的理解,关键环节的推导过程,主要是作为准备面试的需要. 1.准备知识-点到直线距离 点\(x_0\)到超平面(直线)\(w^Tx+b=0\)的距离,可通过如下公式计算: \[ d = \frac{w^Tx_0+b}{||w||}\] 因为公式分子部分没有带绝对值,因此计算得到的d有正负之分.因为超\(w^Tx+b=0\)将空间分为两部分(以2维为例,直线\(w_1x+w_2y+b=0\),将二维空间划分为上下两部分),其中一部分d大于0,另一部分d小于0. 上面距离公式的简单…
通过standard reports查看Disk Usage,选中Database,右击,选择Reports->Standard Reports->Disk Space Usage,截图如下 在Disk Usage 报表中,Data Files Space Usage分为4部分:Index , Data,Unallocated 和 Unused. Index 是Index 结构实际占用的space Data 是table objects实际占用的space Unused 是已经allocate…
一.栈vs堆  深入理解堆栈.堆在内存中的实现 二.Socket 深入探析c# Socket 三.多线程 c# 多线程 --Mutex(互斥锁)…
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程,QQ:231469242) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share https://blog.csdn.net/eddy_zheng/article/details/50763648 1.…
1.决策函数的表达式 公式: 其中: 2.SVM经过训练后,所得到的"dual_coef_" 其实"dual_coef_"就是"ai*yi" 的集合,即: dual_coef_ 与支持向量的类标的关系 如果dual_coef为正,则yi为正:如果dual_coef为负,则yi为负. # 拉格朗日系数与支持向量的类标的乘积的集合(矩阵) a_y = clf.dual_coef_ # 支持向量的类标(转换成矩阵) sv_y = np.array([y…
在很多博客和知乎中我看到了许多对于pytorch框架中RNN接口的一些解析,但都较为浅显甚至出现一些不准确的理解,在这里我想阐述下我对于pytorch中RNN接口的参数的理解. 我们经常看到的RNN网络是如图下所示: RNN的 1. timestep训练过程 这个左边图中间循环的箭头难以理解,所以将其按照时间轴展开成多个单元. 但是!!!! 网络只有一个,网络只有一个,网络只有一个, 并不是想右边那样画的.右边的图只不过是不同时刻的输入.因为每个时刻RNN会产生两个输出,一个output和一个s…