(一)生成学习算法 在线性回归和Logistic回归这种类型的学习算法中我们探讨的模型都是p(y|x;θ),即给定x的情况探讨y的条件概率分布.如二分类问题,不管是感知器算法还是逻辑回归算法,都是在解空间中寻找一条直线从而把两种类别的样例分开,对于新的样例,只要判断在直线的哪一侧即可:这种直接对问题求解的方法可以称为判别学习方法.   而生成学习算法则是对两个类别分别进行建模,用新的样例去匹配两个模板,匹配度较高的作为新样例的类别,比如分辨大象(y=1)和狗(y=0),首先,观察大象,然后建立一…
(一)朴素贝叶斯多项式事件模型 在上篇笔记中,那个最基本的NB模型被称为多元伯努利事件模型(Multivariate Bernoulli Event Model,以下简称 NB-MBEM).该模型有多种扩展,一种是在上一篇笔记中已经提到的每个分量的多值化,即将p(xi|y)由伯努利分布扩展到多项式分布:还有一种在上一篇笔记中也已经提到,即将连续变量值离散化.本文将要介绍一种与多元伯努利事件模型有较大区别的NB模型,即多项式事件模型(Multinomial Event Model,一下简称NB-M…
本课内容: 1.线性回归 2.梯度下降 3.正规方程组   监督学习:告诉算法每个样本的正确答案,学习后的算法对新的输入也能输入正确的答案   1.线性回归 问题引入:假设有一房屋销售的数据如下: 引入通用符号: m =训练样本数 x =输入变量(特征) y =输出变量(目标变量) (x,y)—一个样本 ith—第i个训练样本=(x(i),y(i)) 本例中:m:数据个数,x:房屋大小,y:价格   监督学习过程: 1) 将训练样本提供给学习算法 2) 算法生成一个输出函数(一般用h表示,成为假…
(一)牛顿法解最大似然估计 牛顿方法(Newton's Method)与梯度下降(Gradient Descent)方法的功能一样,都是对解空间进行搜索的方法.其基本思想如下: 对于一个函数f(x),如果我们要求函数值为0时的x,如图所示: 我们先随机选一个点,然后求出该点的切线,即导数,延长它使之与x轴相交,以相交时的x的值作为下一次迭代的值. 更新规则为: 那么如何将牛顿方法应用到机器学习问题求解中呢? 对于机器学习问题,我们优化的目标函数为极大似然估计L,当极大似然估计函数取得最大时,其导…
(一)局部加权回归 通常情况下的线性拟合不能很好地预测所有的值,因为它容易导致欠拟合(under fitting).如下图的左图.而多项式拟合能拟合所有数据,但是在预测新样本的时候又会变得很糟糕,因为它导致数据的 过拟合(overfitting),不符合数据真实的模型.如下图的右图. 下面来讲一种非参数学习方法——局部加权回归(LWR).为什么局部加权回归叫做非参数学习方法呢?首先,参数学习方法是这样一种方法:在训练完成所有数据后得到一系列训练参数,然后根据训练参数来预测新样本的值,这时不再依赖…
在有监督学习里面有几个逻辑上的重要组成部件[3],初略地分可以分为:模型,参数 和 目标函数.(此部分转自 XGBoost 与 Boosted Tree) 一.模型和参数   模型指给定输入xi如何去预测 输出 yi.我们比较常见的模型如线性模型(包括线性回归和logistic regression)采用 二.目标函数:损失 + 正则 模型和参数本身指定了给定输入我们如何做预测,但是没有告诉我们如何去寻找一个比较好的参数,这个时候就需要目标函数登场了.一般的目标函数包含下面两项 常见的误差函数有…
分类算法:对目标值进行分类的算法    1.sklearn转换器(特征工程)和预估器(机器学习)    2.KNN算法(根据邻居确定类别 + 欧氏距离 + k的确定),时间复杂度高,适合小数据    3.模型选择与调优    4.朴素贝叶斯算法(假定特征互独立 + 贝叶斯公式(概率计算) + 拉普拉斯平滑系数),假定独立,对缺失数据不敏感,用于文本分类    5.决策树(找到最高效的决策顺序--信息增益(关键特征=信息熵-条件熵) + 可以可视化)    6.随机森林(bootstarp(又放回…
前言 上一篇<机器学习算法实践:决策树 (Decision Tree)>总结了决策树的实现,本文中我将一步步实现一个朴素贝叶斯分类器,并采用SMS垃圾短信语料库中的数据进行模型训练,对垃圾短信进行过滤,在最后对分类的错误率进行了计算. 与决策树分类和k近邻分类算法不同,贝叶斯分类主要借助概率论的知识来通过比较提供的数据属于每个类型的条件概率, 将他们分别计算出来然后预测具有最大条件概率的那个类别是最后的类别.当然样本越多我们统计的不同类 型的特征值分布就越准确,使用此分布进行预测则会更加准确.…
课程视频地址:http://open.163.com/special/opencourse/machinelearning.html 课程主页:http://cs229.stanford.edu/ 更具体的资料链接:https://www.jianshu.com/p/0a6ef31ff77a 笔记参考自中文翻译版:https://github.com/Kivy-CN/Stanford-CS-229-CN 这一讲介绍了高斯判别分析以及朴素贝叶斯算法. Part IV 生成学习算法 到目前为止,我们…
朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法.对于大多数的分类算法,在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同.比如决策树,KNN,逻辑回归,支持向量机等,他们都是判别方法,也就是直接学习出特征输出Y和特征X之间的关系,要么是决策函数,要么是条件分布.但是朴素贝叶斯却是生成方法,该算法原理简单,也易于实现. 1,基本概念 朴素贝叶斯:贝叶斯分类时一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类.而朴素贝叶斯分类时贝叶斯分类中…