摘要: 本文将介绍 CBO,它充分考虑了数据本身的特点(如大小.分布)以及操作算子的特点(中间结果集的分布及大小)及代价,从而更好的选择执行代价最小的物理执行计划,即 SparkPlan. Spark CBO 背景 上文Spark SQL 内部原理中介绍的 Optimizer 属于 RBO,实现简单有效.它属于 LogicalPlan 的优化,所有优化均基于 LogicalPlan 本身的特点,未考虑数据本身的特点,也未考虑算子本身的代价. 本文将介绍 CBO,它充分考虑了数据本身的特点(如大小…
转载:CBO基于成本的优化器 ----------------------------------2013/10/02 CBO基于成本的优化器:让oracle获取所有执行计划的相关信息,通过对这些信息做计算分析,最后得出一个代价最小的执行计划作为最终执行计划.   还是前面的例子,让我们再来看看CBO的表现:   SQL> select /*+ all_rows */ * from t where id = 1; 已选择50600行. 执行计划 -------------------------…
Spark SQL允许相关的查询如SQL,HiveQL或Scala运行在spark上.其核心组件是一个新的RDD:SchemaRDD,SchemaRDDs由行对象组成,并包含一个描述此行对象的每一列的数据类型的schema.SchemaRDD和传统关系型数据库的表类似.SchemaRDD可以通过已有的RDD.Parquet(列式存储格式)类型文件.JSON数据集,或通过运行HiveQL获取存储在Apache Hive中的数据.社区文档介绍:https://spark.apache.org/doc…
1. 遇到了啥问题 是酱紫的,简单来说:并发执行 spark job 的时候,并发的提速很不明显. 嗯,且听我慢慢道来,啰嗦点说,类似于我们内部有一个系统给分析师用,他们写一些 sql,在我们的 spark cluster 上跑.随着分析师越来越多,sql job 也越来越多,等待运行的时间也越来越长,我们就在想怎么把 sql 运行的时间加快一点.我们的整个架构是 spark 1.6.1 on YARN 的,经过分析一些 sql 发现其实大多数分析语句都是比较简单的统计 sql,集群资源也还算多…
1 背  景 Spark SQL / Catalyst 和 CBO 的优化,从查询本身与目标数据的特点的角度尽可能保证了最终生成的执行计划的高效性.但是 执行计划一旦生成,便不可更改,即使执行过程中发现后续执行计划可以进一步优化,也只能按原计划执行: CBO 基于统计信息生成最优执行计划,需要提前生成统计信息,成本较大,且不适合数据更新频繁的场景: CBO 基于基础表的统计信息与操作对数据的影响推测中间结果的信息,只是估算,不够精确. 本文介绍的 Adaptive Execution 将可以根据…
前言 Catalyst是Spark SQL核心优化器,早期主要基于规则的优化器RBO,后期又引入基于代价进行优化的CBO.但是在这些版本中,Spark SQL执行计划一旦确定就不会改变.由于缺乏或者不准确的数据统计信息(如行数.不同值的数量.NULL值.最大/最小值等)和对成本的错误估算导致生成的初始计划不理想,从而导致执行效率相对低下. 那么就引来一个思考:我们如何能够在运行时获取更多的执行信息,然后根据这些信息来动态调整并选择一个更优的执行计划呢? Spark SQL自适应执行优化引擎(Ad…
http://wenku.baidu.com/link?url=liS0_3fAyX2uXF5MAEQxMOj3YIY4UCcQM4gPfPzHfFcHBXuJTE8rANrwu6GXwdzbmvdVkWA66z9KOaFu6O_0PrhWxCEUd4ECYzqC7QL82hq Oracle_SQL调优整理 http://wenku.baidu.com/link?url=22Ckwm6xY-eXhshqSaSBQKzsWMzfkrcdRVP5vWFGPbvv4TF1NPb6gj7ul2eIBDe…
Spark SQL是Spark最新和技术最为复杂的组件之一.它支持SQL查询和新的DataFrame API.Spark SQL的核心是Catalyst优化器,它以一种新颖的方式利用高级编程语言特性(例如Scala的模式匹配和quasiquotes)来构建可扩展查询优化器. 我们最近发布了一篇关于Spark SQL的论文,该论文将出现在SIGMOD 2015(由Davies Liu,Joseph K. Bradley,Xiangrui Meng,Tomer Kaftan,Michael J. F…
spark SQL 性能调整 对于某些工作负载,可以通过在内存中缓存数据或打开一些实验选项来提高性能. 1,在内存中缓存数据        Spark SQL可以通过调用spark.catalog.cacheTable("tableName")或使用内存中的列格式缓存表dataFrame.cache().然后,Spark SQL将只扫描所需的列,并自动调整压缩以最大限度地减少内存使用和GC压力.你可以调用spark.catalog.uncacheTable("tableNam…
Spark SQL是Apache Spark最广泛使用的一个组件,它提供了非常友好的接口来分布式处理结构化数据,在很多应用领域都有成功的生产实践,但是在超大规模集群和数据集上,Spark SQL仍然遇到不少易用性和可扩展性的挑战.为了应对这些挑战,英特尔大数据技术团队和百度大数据基础架构部工程师在Spark 社区版本的基础上,改进并实现了自适应执行引擎.本文首先讨论Spark SQL在大规模数据集上遇到的挑战,然后介绍自适应执行的背景和基本架构,以及自适应执行如何应对Spark SQL这些问题,…