sklearn 翻译笔记:KNeighborsClassifier】的更多相关文章

今天做机器学习knn的实现想使用sklearn这个模块,但是里面的函数不懂,无奈只能查文档,但是一大片英文看见我就烦,也不是说不能看  但是以我低下的英语水平实在是太费劲了.幸好找到一篇前人翻译的比较好的解释.给大家推荐一下:一位来自简书的作者:吃着苹果写代码   感谢作者的分享,希望能帮到更多的人. sklearn 翻译笔记:KNeighborsClassifier - 简书 顺便把今天实现的代码也分享出来吧:诚然,代码实现顺利运行的呢一刻真的很开心 本代码是在python 中文文本分类 -…
Distinctive Image Features from Scale-Invariant Keypoints,这篇论文是图像识别领域SIFT算法最为经典的一篇论文,导师给布置的第一篇任务就是它.网上找了好多找不到中译本,那就自己动手丰衣足食吧,顺便造福后人,花时间翻译啃下来并做一个笔记在这吧. ---------------------------------------------------------------------------------------------------…
Explaining Titanic hypothesis with decision trees decision trees are very simple yet powerful supervised learning methods, which constructs a decision tree model, which will be used to make predictions. The main advantage of this model is that a huma…
Text classifcation with Naïve Bayes In this section we will try to classify newsgroup messages using a dataset that can be retrieved from within scikit-learn. This dataset consists of around 19,000 newsgroup messages from 20 different topics ranging…
Image recognition with Support Vector Machines #our dataset is provided within scikit-learn #let's start by importing and printing its description import sklearn as sk import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fe…
svnserve.conf 假如你使用这个文件去允许访问这个仓库,那么这个文件控制着svnserve后台进程的配置.(但是如果你只是允许通过http和/或者 file:URLs,则这个文件就不起作用了.)原文是irrelevant,中文是不相干,无关的意思,这里笔者将其意译为不起作用. 可以通过访问http://subversion.apache.org/获取更多信息. [general] anon-access和auth-access两个选项分别控制着访问仓库的未经身份验证的用户和已认证的用户…
简单线性回归 线性回归是数据挖掘中的基础算法之一,从某种意义上来说,在学习函数的时候已经开始接触线性回归了,只不过那时候并没有涉及到误差项.线性回归的思想其实就是解一组方程,得到回归函数,不过在出现误差项之后,方程的解法就存在了改变,一般使用最小二乘法进行计算. 使用sklearn.linear_model.LinearRegression进行线性回归 sklearn对Data Mining的各类算法已经有了较好的封装,基本可以使用fit.predict.score来训练.评价模型,并使用模型进…
用Bagging优化模型的过程:1.对于要使用的弱模型(比如线性分类器.岭回归),通过交叉验证的方式找到弱模型本身的最好超参数:2.然后用这个带着最好超参数的弱模型去构建强模型:3.对强模型也是通过交叉验证的方式找到强模型的最好超参数(比如弱模型的数量) 对于Bagging.RandomForest.Boosting这些组合算法,默认是用的弱模型是决策树,但是可以通过base_estimator参数调整. np.linspace() 创建等比数列,生成(start,stop)区间指定元素个数nu…
https://blog.csdn.net/zhangyang10d/article/details/53418227 数据预处理 sklearn.preprocessing 标准化 (Standardization) 规范化(Normalization) 二值化 分类特征编码 推定缺失数据 生成多项式特征 定制转换器 1. 标准化Standardization(这里指移除均值和方差标准化) 标准化是很多数据分析问题的一个重要步骤,也是很多利用机器学习算法进行数据处理的必要步骤. 1.1 z-s…
岭回归 岭回归是一种专用于共线性数据分析的有偏估计回归方法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息.降低精度为代价获得回归系数更为符合实际.更可靠的回归方法,对病态数据的拟合要强于最小二乘法. 使用sklearn.linear_model.Ridge进行岭回归 一个简单的例子 from sklearn.linear_model import Ridge clf = Ridge(alpha=.5) X = [[0,0],[0,0],[1,1]] y = [0,…