顶级Python库】的更多相关文章

使用这些库把 Python 变成一个科学数据分析和建模工具. Python 的许多特性,比如开发效率.代码可读性.速度等使之成为了数据科学爱好者的首选编程语言.对于想要升级应用程序功能的数据科学家和机器学习专家来说,Python 通常是最好的选择(比如,Andrey Bulezyuk 使用 Python 语言创造了一个优秀的机器学习应用程序). 由于 Python 的广泛使用,因此它拥有大量的库,使得数据科学家能够很容易地完成复杂的任务,而且不会遇到许多编码困难.下面列出 3 个用于数据科学的顶…
近日,数据科学网站 KDnuggets 评选出了顶级 Python 库 Top15,领域横跨数据科学.数据可视化.深度学习和机器学习.如果本文有哪些遗漏,你可以在评论区补充. 图 1:根据 GitHub star 和贡献评选出的 2018 顶级 Python 库.形状大小与贡献者数量成正比 以下为 2018 年排名前 15 的 Python 库(数据截止 2018 年 12 月 16 日): 1 TensorFlow(贡献者:1757,贡献:25756,Stars:116765) “Tensor…
绝不能错过的24个顶级Python库 Python有以下三个特点: · 易用性和灵活性 · 全行业高接受度:Python无疑是业界最流行的数据科学语言 · 用于数据科学的Python库的数量优势 事实上,由于Python库种类很多,要跟上其发展速度非常困难.因此,本文介绍了24种涵盖端到端数据科学生命周期的Python库. 文中提及了用于数据清理.数据操作.可视化.构建模型甚至模型部署(以及其他用途)的库.这是一个相当全面的列表,有助于你使用Python开启数据科学之旅. 用于不同数据科学任务的…
NumPy NumPy(数值 Python 的简称)是其中一个顶级数据科学库,它拥有许多有用的资源,从而帮助数据科学家把 Python 变成一个强大的科学分析和建模工具.NumPy 是在 BSD 许可证的许可下开源的,它是在科学计算中执行任务的基础 Python 库.SciPy 是一个更大的基于 Python 生态系统的开源工具,而 NumPy 是 SciPy 非常重要的一部分. NumPy 为 Python 提供了大量数据结构,从而能够轻松地执行多维数组和矩阵运算.除了用于求解线性代数方程和其…
6个顶级Python NLP库的比较! http://blog.itpub.net/31509949/viewspace-2212320/ 自然语言处理(NLP)如今越来越流行,在深度学习开发的背景下变得尤为引人注目.在人工智能领域中,自然语言处理(NLP)从文本中理解和提取重要信息,并基于文本数据进行进一步的数据训练,其主要任务包括语音识别和生成.文本分析.情感分析.机器翻译等. 在过去的几十年中,只有那些精通语言教育的专家才能从事自然语言处理.除了具有数学和机器学习知识以外,他们还精通一些关…
为什么我喜欢Python?对于初学者来说,这是一种简单易学的编程语言,另一个原因:大量开箱即用的第三方库,正是23万个由用户提供的软件包使得Python真正强大和流行. 在本文中,我挑选了15个最有用的软件包,介绍它们的功能和特点. 1. Dash Dash 是一个用于构建基于 Web 的应用程序的 Python 库,无需 JavaScript . Dash 同时也是用于创建分析 Web 应用程序的用户界面库.那些使用 Python 进行数据分析.数据挖掘.可视化.建模.仪器控制和报告的人可以立…
核心库 1. NumPy (提交数: 15980, 贡献者数: 522) 当开始处理Python中的科学任务,Python的SciPy Stack肯定可以提供帮助,它是专门为Python中科学计算而设计的软件集合(不要混淆SciPy库,它是SciPy Stack的一部分,和SciPy Stack的社区)这样我们开始来看一下吧.然而,SciPy Stack相当庞大,其中有十几个库,我们把焦点放在核心包上(特别是最重要的). 关于建立科学计算栈,最基本的包是Numpy(全称为Numerical Py…
这是一篇译文,文中提及了一些不常见但是有用的Python库 原文地址:http://blog.yhathq.com/posts/11-python-libraries-you-might-not-know.html 首发:伯乐在线 译者:zer0Black 校稿人:Daetalus Python的库多如牛毛.再见多识广的人也无法知晓全部.光PyPi的网站上就列出了超过47000个Python库.   本文由博客园zer0black撰写/翻译,未经允许,禁止转载 近来,越来越多的数据科学家开始使用…
python自动化测试(4)-使用第三方python库技术实现 1   概述 关于测试的方法论,都是建立在之前的文章里面提到的观点: 功能测试不建议做自动化 接口测试性价比最高 接口测试可以做自动化 做好接口自动化,一定要有透过界面看到数据本质的能力 后面所谈到的 测试自动化 也将围绕着 接口自动化 来介绍. 2   可测试架构 目前互联网行业流行的“一服务,多客户端”的架构是一种 可测试性好 的架构,架构图如下: 服务器和客户端采用Http(或者WebSocket)的方式进行通讯 数据交换的格…
直接执行安装命令 $ pip install builtwith 提示pip当前版本为7.1.2,要使用"pip install --upgrade pip"升级到8.1.2 $ pip install --upgrade pip 报错如下: Cannot fetch index base URL https://pypi.mirrors.ustc.edu.cn/simple/ 提示信息表示找不到镜像网站,有可能是镜像源失效了,或者国外的源被墙了.修改为国内可访问的源 $ vim ~/…