目录 RANSAC算法线性回归(波斯顿房价预测) 一.RANSAC算法流程 二.导入模块 三.获取数据 四.训练模型 五.可视化 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ RANSAC算法线性回归(波斯顿房价预测) 虽然普通线性回归预测结果总体而言还是挺不错的,但是从数据上可以看出数据集中有较多的离群值,因此本节将使用RANSAC算法针对离群值做处理,即根据数据…
目录 波士顿房价预测 导入模块 获取数据 打印数据 特征选择 散点图矩阵 关联矩阵 训练模型 可视化 波士顿房价预测 导入模块 import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from matplotlib.font_manager import FontProperties from sklearn.linear_model import LinearReg…
数据集 house.csv 数据集概览 代码 package org.apache.spark.examples.examplesforml import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.ml.feature.VectorAssembler import org.apache.spark.ml.regression.{IsotonicRegression, LinearRe…
波士顿房价预测 Boston housing 这是一个波士顿房价预测的一个实战,上一次的Titantic是生存预测,其实本质上是一个分类问题,就是根据数据分为1或为0,这次的波士顿房价预测更像是预测一个连续值,当然这也是一个非常经典的机器学习案例Boston housing 如果想了解更多的知识,可以去我的机器学习之路 The Road To Machine Learning通道 @ 目录 活动背景 数据介绍 详细代码解释 导入Python Packages 读入数据 Read-In Data…
使用sklearn进行数据挖掘系列文章: 1.使用sklearn进行数据挖掘-房价预测(1) 2.使用sklearn进行数据挖掘-房价预测(2)-划分测试集 3.使用sklearn进行数据挖掘-房价预测(3)-绘制数据的分布 4.使用sklearn进行数据挖掘-房价预测(4)-数据预处理 5.使用sklearn进行数据挖掘-房价预测(5)-训练模型 6.使用sklearn进行数据挖掘-房价预测(6)-模型调优 在前几节,我们先对数据进行了解,然后又详细介绍了数据集划分的方法,为了帮助我们更好的了…
最近学人工智能,讲到了Kaggle上的一个竞赛任务,Ames房价预测.本文将描述一下数据预处理和特征工程所进行的操作,具体代码Click Me. 原始数据集共有特征81个,数值型特征38个,非数值型特征43个.有很多缺失值. 1.离群点检测 以GrLivArea(地上面积)和SalePrice(房价)为自变量和因变量,得到如下散点图: 从上图中可以看出有2个极端的离群点在图的右下角(面积很大,但价格很低).该数据集的提供者建议移除面积大于4000 square feet的数据点(这样就去掉了4个…
梯度消失.梯度爆炸以及Kaggle房价预测 梯度消失和梯度爆炸 考虑到环境因素的其他问题 Kaggle房价预测 梯度消失和梯度爆炸 深度模型有关数值稳定性的典型问题是消失(vanishing)和爆炸(explosion). 当神经网络的层数较多时,模型的数值稳定性容易变差. 假设一个层数为\(L\)的多层感知机的第\(l\)层\(\boldsymbol{H}^{(l)}\)的权重参数为\(\boldsymbol{W}^{(l)}\),输出层\(\boldsymbol{H}^{(L)}\)的权重参…
  基于房价数据,在python中训练得到一个线性回归的模型,在JavaWeb中加载模型完成房价预测的功能. 一. 训练.保存模型 工具:PyCharm-2017.Python-39.sklearn2pmml-0.76.1. 1.训练数据house_price.csv No square_feet price 1 150 6450 2 200 7450 3 250 8450 4 300 9450 5 350 11450 6 400 15450 7 600 18450 2.训练.保存模型 impo…
给定两个点p1与p2的坐标,确定这两点所构成的直线,要求对于输入的任意点p3,都可以判断它是否在该直线上.初中解析几何知识告诉我们,判断一个点在直线上,只需其与直线上任意两点点斜率都相同即可.实际操作当中,往往会先根据已知的两点算出直线的表达式(点斜式.截距式等等),然后通过向量计算即可方便地判断p3是否在该直线上. 生产实践中的数据往往会有一定的偏差.例如我们知道两个变量X与Y之间呈线性关系,Y=aX+b,我们想确定参数a与b的具体值.通过实验,可以得到一组X与Y的测试值.虽然理论上两个未知数…
在使用机器算法之前,我们先把数据做下预处理,先把特征和标签拆分出来 housing = strat_train_set.drop("median_house_value",axis=1) #原始数据集并未发生改变 housing_labels=strat_train_set["median_house_value"].copy() 数据清洗 大多数机器学习算法是不能在有缺失值的数据集上面运行的,而本数据集特征total_bedrooms是存在数据缺失现象的,所以就需…