首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
python_机器学习_监督学习模型_决策树
】的更多相关文章
python_机器学习_监督学习模型_决策树
决策树模型练习:https://www.kaggle.com/c/GiveMeSomeCredit/overview 1. 监督学习--分类 机器学习肿分类和预测算法的评估: a. 准确率 b.速度 c. 强壮行 d.可规模性 e. 可解释性 2. 什么是决策树/判定树(decision tree)? https://scikit-learn.org/stable/modules/tree.html 3. 熵(entropy)概念: 变量的不确定越大,熵也就越大. 4. 决策树归纳算法(ID3)…
[并发并行]_[线程模型]_[Pthread线程使用模型之三 客户端/服务端模型(Client/Server]
Pthread线程使用模型之三 客户端/服务端模型(Client/Server) 场景 1.在客户端/服务端模型时,客户端向服务端请求一些数据集的操作. 服务端执行执行操作独立的(多进程或跨网络)– 客户端可以等待服务端响应再做其他任务或者做一些并行的操作,在一段时间后被通知时再去查询结果. 虽然客户端等待服务端是最简单的方式, 但是这种情况极少使用, 因为它不具备速度和性能优势, 同步的只适合获取一些普通的资源. 比如Socket i/O的非阻塞或异步模型. 2.在做一些复杂的命令行程序时(单…
[并发并行]_[线程模型]_[Pthread线程使用模型之二 工作组work crew]
Pthread线程使用模型之二工作组(Work crew) 场景 1.一些耗时的任务,比如分析多个类型的数据, 是独立的任务, 并不像 pipeline那样有序的依赖关系, 这时候pipeline就显得不合适了,因为它不能同时处理这些任务. 当然有些任务A可能依赖任务B的输出, 这可能就嵌套了pipeline模型了. 2.复杂的计算,可以分开独立的逻辑单独处理, 之后再合并结果. 说明 1.在工作组里, 数据是被一组线程独立处理的, 这意味着有一个"parallel decomposition&…
[并发并行]_[线程模型]_[Pthread线程使用模型之一管道Pipeline]
场景 1.经常在Windows, MacOSX 开发C多线程程序的时候, 经常需要和线程打交道, 如果开发人员的数量不多时, 同时掌握Win32和pthread线程 并不是容易的事情, 而且使用Win32线程并不能写出跨平台的实现. 所以在成本的制约下选用pthread作为跨平台线程库的首选. 有足够人力的公司可以再封装一层对Win32和本地pthread的调用. 比如 chrome. 2.线程在做高可用, 高性能的程序时必不可少, 比如Socket, 并发任务, 顺序任务,文件下载等需要充分利…
Java_太阳系_行星模型_小游戏练习_详细注释
//实现MyFrame--实现绘制窗口,和实现重写 重画窗口线程类 package cn.xiaocangtian.Test; import java.awt.Frame; import java.awt.event.WindowAdapter; import java.awt.event.WindowEvent; public class MyFrame extends Frame { //加载窗口 public void launchFrame() { setSize(Constant.GA…
网络_OSI模型_数据包传输
2017年1月12日, 星期四 网络_OSI模型_数据包传输 1. 网络_源主机_局域网_交换机_路由器_目标主机 2. OSI7七层_TCP/IP精简 OSI 7层: 应用层 表示层 会话层 传输层 网络层 链路层 物理层 TCP/IP : 应用层 HTTP(HTML/XML/JSON) SOCKET 0~65535 传输层 TCP/UDP …
(转)看穿机器学习(W-GAN模型)的黑箱
本文转自:http://www.360doc.com/content/17/0212/11/35919193_628410589.shtml# 看穿机器学习(W-GAN模型)的黑箱 2017-02-12 黑马_御风 摘自 老顾谈几何 阅 3 转藏到我的图书馆 微信分享: 图a. Principle of GAN. 前两天纽约暴雪,天地一片苍茫.今天元宵节,长岛依然清冷寂寥,正月十五闹花灯的喧嚣热闹已成为悠远的回忆.这学期,老顾在讲授一门研究生水平的数字几何课程,目前讲…
Spark机器学习6·聚类模型(spark-shell)
K-均值(K-mean)聚类 目的:最小化所有类簇中的方差之和 类簇内方差和(WCSS,within cluster sum of squared errors) fuzzy K-means 层次聚类(hierarchical culstering) 凝聚聚类(agglomerative clustering) 分列式聚类(divisive clustering) 0 运行环境 cd $SPARK_HOME bin/spark-shell --name my_mlib --packages or…
spark机器学习从0到1决策树(六)
一.概念 决策树及其集合是分类和回归的机器学习任务的流行方法. 决策树被广泛使用,因为它们易于解释,处理分类特征,扩展到多类分类设置,不需要特征缩放,并且能够捕获非线性和特征交互. 诸如随机森林和增强的树集合算法是分类和回归任务的最佳表现者. 决策树(decision tree)是一种基本的分类与回归方法,这里主要介绍用于分类的决策树.决策树模式呈树形结构,其中每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别.学习时利用训练数据,根据损失函数最小化的原则建立…
Python 机器学习实战 —— 监督学习(上)
前言 近年来AI人工智能成为社会发展趋势,在IT行业引起一波热潮,有关机器学习.深度学习.神经网络等文章多不胜数.从智能家居.自动驾驶.无人机.智能机器人到人造卫星.安防军备,无论是国家级军事设备还是广泛的民用设施,都充斥着AI应用的身影.接下来的一系列文章将会由浅入深从不同角度分别介绍机器学习.深度学习之间的关系与区别,通过一系统的常用案例讲述它们的应用场景.本文将会从最常见的机器学习开始介绍相关的知识应用与开发流程. 目录 一.浅谈机器学习 二.基本概念 三.常用方法介绍 四.线性模型 五.…