[Luogu P2257] YY的GCD (莫比乌斯函数)】的更多相关文章

题面 传送门:洛咕 Solution 推到自闭,我好菜啊 显然,这题让我们求: \(\large \sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)\in prime]\) 根据套路,我们可以把判断是否为质数改为枚举这个质数,有: 为了方便枚举,我们在这里假设有\(m>n\) \(\large \sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{k\in prime}^{n}[gcd(i,j)= k]\) 显然,要让\(gcd(i,j)=k\),必须要有\…
第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N}{n} \rfloor \lfloor \frac{M}{n} \rfloor$ $f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d)$ $ans=\sum_{p\in pri}f(p)$ $=\sum_{p\in pri}\sum_{p|d}\mu(\frac{d}{p})F…
https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}[gcd(i,j)==p] $ 由套路: \(=\sum\limits_p \sum\limits_{k=1}^{N}\mu(k) \lfloor\frac{n}{kp}\rfloor \lfloor\frac{m}{kp}…
题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便表述,由于n和m等价,以下内容均默认n<=m 题目让我们求:$\sum_{k=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==k]$ 容易变形为:$\sum_{k=1}^{n}\sum_{i=1}^{\left \lfloor \frac{n}{k} \righ…
原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少\((x,y)\)满足\(gcd(x,y)\in \mathbb{P}\) 数据范围 \(T=10000\),\(1\leqslant N,M\leqslant 10000000\) 显然,暴力不可做. 这种公约数计数的题貌似大多都是用莫比乌斯反演做的?套路啊,套路. 首先,我们先很套路地设一个函数…
莫比乌斯反演第一题.莫比乌斯反演入门 数论题不多BB,直接推导吧. 首先,发现题目所求\(ans=\sum_{i=1}^n\sum_{j=1}^m [\gcd(i,j)=prime]\) 考虑反演,我们令\(f(d)\)为\(\gcd(i,j)(i\in[1,n],j\in[1,m])=d\)的个数,\(F(n)\)为\(d|\gcd(i,j)\)的个数 即: \[f(d)=\sum_{i=1}^n\sum_{j=1}^m [\gcd(i,j)=d]\] \[F(s)=\sum_{s|d}f(d…
原题传送门 这题需要运用莫比乌斯反演(懵逼钨丝繁衍) 显然题目的答案就是\[ Ans=\sum_{i=1}^N\sum_{j=1}^M[gcd(i,j)=prime]\] 我们先设设F(n)表示满足\(gcd(i,j)\%t=0\)的数对个数,f(t)表示满足\(gcd(i,j)=t\)的数对个数 \[f(t)=\sum_{i=1}^N\sum_{j=1}^M[gcd(i,j)=t]\] \[F(n)=\sum_{n|t}\lfloor \frac{N}{n} \rfloor \lfloor \…
题意:求\[\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j) = prim]\] 题解:那就开始化式子吧!! \[f(d) = \sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j) = d]\] \[F(x) = \sum_{d|x} f(d) = \left \lfloor \frac{n}{x} \right \rfloor \left \lfloor \frac{m}{x} \right \rfloor\] \[f(d) = \sum_{d|…
P2257 YY的GCD 题目描述 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 kAc这种傻×必然不会了,于是向你来请教…… 多组输入 输入输出格式 输入格式: 第一行一个整数T 表述数据组数 接下来T行,每行两个正整数,表示N, M 输出格式: T行,每行一个整数表示第i组数据的结果 输入输出样例 输入样例#1: 复制 2 10 10 100 100 输出样例#1: 复制 30 2791…
洛谷 P2257 YY的GCD \(solution:\) 这道题完全跟[POI2007]ZAP-Queries (莫比乌斯反演+整除分块) 用的一个套路. 我们可以列出答案就是要我们求: \(ans=\sum_{p\in prime}\sum_{i=1}^{n}{\sum_{j=1}^{m}{[gcd(i,j)==p]}}\) 我们发现后面那一部分(\(\sum_{i=1}^{n}{\sum_{j=1}^{m}{[gcd(i,j)==p]}}\))可以套路的莫比乌斯反演: \(ans=\sum…