本文介绍Neyman-Pearson理论,这也是我们会见到的最常见假设检验问题类,这里第一Part的概念介绍略显枯燥,大家尽量理解即可.由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢! 目录 Part 1:NP理论的基本概念 Part 2:似然比检验 Part 3:假设检验与区间估计 Part 1:NP理论的基本概念 NP理论的样本\(X\sim \{F_{\theta}:\theta\in\Theta \}\),即来自一个参数分布族,相比拟合优度检验,此时的模型假…
<零起点,python大数据与量化交易>,这应该是国内第一部,关于python量化交易的书籍. 有出版社约稿,写本量化交易与大数据的书籍,因为好几年没写书了,再加上近期"前海智库·zw大数据"项目,刚刚启动. 因为时间紧,只花了半天时间,整理框架和目录. 说是v0.1版,但核心框架已经ok:从项目角度而言,完成度,已经超过70%,剩下的只是体力活. 完成全本书,需要半年以上连续时间,本人没空,大家不要再问:"什么时间可以完成." 配合zwPython,这…
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有一些 也可以划归到计算机视觉中去.这都不重要,只要知道有这么个方法,能为自己 所用,或者从中得到灵感,这就够了. 8. Edge Detection 边缘检测也是图像处理中的一个基本任务.传统的边缘检测方法有基于梯度 算子,尤其是 Sobel 算子,以及经典的 Canny 边缘检测.到现在,Cann…
在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或不流失.涨或跌等,对于这类问题,线性回归将束手无策.这个时候就需要另一种回归方法进行预测,即Logistic回归. 在实际应用中,Logistic模型主要有三大用途: 1)寻找危险因素,找到某些影响因变量的"坏因素",一般可以通过优势比发现危险因素: 2)用于预测,可以预测某种情况发生的概…
最大似然估计&贝叶斯估计 与传统计量模型相对的统计方法,存在 1)参数的解释不同:经典估计:待估参数具有确定值它的估计量才是随机的.如果估计量是无偏的,该估计量的期望等于那个确定的参数.bayes待估参数服从某种分布的随机变量. 2)利用的信息不同:经估:只利用样本信息,bayes要求事先提供一个参数的先验分布,即人们对有关参数的主观认识,是非样本信息.在参数估计中它们与样本信息一起被利用. 3)对随机误差项的要求不同,经典估计除了最大似然法在参数估计中不要求知道随机误差项的具体分布形式在假设检…
随机森林算法的理论知识 随机森林是一种有监督学习算法,是以决策树为基学习器的集成学习算法.随机森林非常简单,易于实现,计算开销也很小,但是它在分类和回归上表现出非常惊人的性能,因此,随机森林被誉为“代表集成学习技术水平的方法”. 一,随机森林的随机性体现在哪几个方面? 1,数据集的随机选取 从原始的数据集中采取有放回的抽样(bagging),构造子数据集,子数据集的数据量是和原始数据集相同的.不同子数据集的元素可以重复,同一个子数据集中的元素也可以重复. 2,待选特征的随机选取 与数据集的随机选…
γ = 1/scale =1/0.902 α = exp(−(Intercept)γ)=exp(-(7.111)*γ) > library(survival) > myfit=survreg(Surv(futime, fustat)~1 , ovarian, dist="weibull",scale=0) > summary(myfit) Call: survreg(formula = Surv(futime, fustat) ~ 1, data = ovarian,…
数据分析真不是一门省油的灯,搞的人晕头转向,而且涉及到很多复杂的计算,还是书读少了,小学毕业的我,真是死了不少脑细胞, 学习二元Logistic回归有一段时间了,今天跟大家分享一下学习心得,希望多指教! 二元Logistic,从字面上其实就可以理解大概是什么意思,Logistic中文意思为“逻辑”但是这里,并不是逻辑的意思,而是通过logit变换来命名的,二元一般指“两种可能性”就好比逻辑中的“是”或者“否”一样, Logistic 回归模型的假设检验——常用的检验方法有似然比检验(likeli…
接着曾经的<SAS编程与数据挖掘商业案例>,之前全是sas的基础知识,如今開始进入数据挖掘方面笔记,本文主要介绍数据挖掘基本流程以及应用方向,并以logistic回归为例说明. 一:数据挖掘综述 衡量一个数据挖掘模型价值的唯一标准就是商业目标,为达到一个商业目标.有非常多种方法.仅仅有高效解决商业目标的方法才是最牛的方法.即使是看似简单的方法,仅仅要能高效解决商业目标,我们就觉得是牛的方法: 面对海量的数据,即使是使用了最先进的工具,最复杂的算法.可是假设挖掘出来的知识是没用的,或者挖掘的结果…
SPSS分析技术:无序多元Logistic回归模型:美国总统大选的预测历史及预测模型 在介绍有序多元Logistic回归分析的理论基础时,介绍过该模型公式有一个非常重要的假设,就是自变量对因变量多个类别(因变量是定序数据)的影响程度是相同的.如果因变量有4个水平,那么有序多元逻辑回归分析最终会产生3个回归方程,这些回归方程除了常数项以外,其余的部分都是一样的,这就体现了模型的假设.因为有这个假设的存在,所以做有序多元Logistic回归分析时,可以同时输出平行性检验结果.如果检验结果不通过,那么…