面试题 & 真实经历 面试题:在数据量很大的情况下,怎么实现深度分页? 大家在面试时,或者准备面试中可能会遇到上述的问题,大多的回答基本上是分库分表建索引,这是一种很标准的正确回答,但现实总是很骨感,所以面试官一般会追问你一句,现在工期不足,人员不足,该怎么实现深度分页? 这个时候没有实际经验的同学基本麻爪,So,请听我娓娓道来. 惨痛的教训 首先必须明确一点:深度分页可以做,但是深度随机跳页绝对需要禁止. 上一张图: 你们猜,我点一下第142360页,服务会不会爆炸? 像MySQL,Mongo…
题目:使用scroll实现Elasticsearch数据遍历和深度分页 作者:星爷 出处: http://lxWei.github.io/posts/%E4%BD%BF%E7%94%A8scroll%E5%AE%9E%E7%8E%B0Elasticsearch%E6%95%B0%E6%8D%AE%E9%81%8D%E5%8E%86%E5%92%8C%E6%B7%B1%E5%BA%A6%E5%88%86%E9%A1%B5.html 背景 Elasticsearch 是一个实时的分布式搜索与分析引擎…
上千万或上亿的数据,如今的机器的内存应该能存下.所以考虑採用hash_map/搜索二叉树/红黑树等来进行统计次数. 然后就是取出前N个出现次数最多的数据了,能够用第2题提到的堆机制完毕. #include "IOSTREAM" #include<hash_map> #include<string> #include<map> using namespace std; int main(void) { //海量待统计数据 char* a[5]={&qu…
平时都是几百万的数据量,这段时间公司中了个大标,有上亿的数据量. 现在情况是数据已经在数据库里面了,需要用R分析,但是完全加载不进来内存. 面对现在这种情况,R提供了ff, ffbase , ETLUtils  的解决方案. 它可以很简单的加载,转换数据库的数据进入R内存,ETLUtils 包现在已经扩展了read.odbc.ffdf 方法用来查询Oracle, MySQL, PostgreSQL & sqlite databases.. 下面我们就来展示一个例子. require(ETLUti…
Hello,大家好,我是楼下小黑哥~ 如果给你一个包含一亿行数据的超大文件,让你在一周之内将数据转化导入生产数据库,你会如何操作? 上面的问题其实是小黑哥前段时间接到一个真实的业务需求,将一个老系统历史数据通过线下文件的方式迁移到新的生产系统. 由于老板们已经敲定了新系统上线时间,所以只留给小黑哥一周的时间将历史数据导入生产系统. 由于时间紧,而数据量又超大,所以小黑哥设计的过程想到一下解决办法: 拆分文件 多线程导入 欢迎关注我的公众号:小黑十一点半,获得日常干货推送.如果您对我的专题内容感兴…
  摘要:如何打造一套企业级的实时数据融合平台?Tapdata 已经找到了最佳实践,下文将以 Tapdata 的零售行业客户为例,与您分享:基于 ES 和 MongoDB 来快速构建一套企业级的实时数据融合平台.   在大数据时代,几乎每家企业都有上一套数据平台的冲动,目前也有很多的离线解决方案,包括 Hadoop 体系的 CDH.TDH,还有一些传统的数仓.但是有两大因素让企业无从下手:一是"实时",二是"融合".一方面,随着 IT 架构的迭代升级和业务端的全渠道…
本文为本人最近利用几个小时才分析总结出的原创文章,希望大家转载,但是要注明出处 http://blog.sina.com.cn/s/blog_438308750100im0e.html 有什么问题可以互相讨论:yubaojian0616@163.com 于堡舰 上一篇文章我们测试一些order by查询和分页查询的一些基准性能,现在我们来分析一下条件索引查询的结果集的测试 现在我们继续进行一个测试相同的表结构插入1亿条数据这次用到的是Innodb表引擎,表名有些变化,这里为甚要新建一个表的很重要…
[翻译] C# 8.0 新特性 2018-11-13 17:04 by Rwing, 1179 阅读, 24 评论, 收藏, 编辑 原文: Building C# 8.0[译注:原文主标题如此,但内容大部分为新特性介绍,所以意译标题为 "C# 8.0 新特性"] C# 的下一个主要版本是 8.0.我们已经为它工作了很长一段时间,即使我们构建并发布了次要版本 C# 7.1, 7.2 和 7.3,我仍然对 8.0 将带来的新特性感到非常兴奋. 目前的计划是 C# 8.0 将与 .NET C…
生产环境zabbix3.2上亿的表数据通过表分区的方式进行历史数据清理 zabbix服务器经常报警io过载,在报警的时候发现是数据库在删除历史数据时耗时较长 数据库积攒了大量的历史数据信息,主要集中在zabbix的history.history_uint.history_str.history_text.trends.trends_uint这几个表中 需要进行清理,两种清理方式: .直接清空表,最省事,速度最快,缺陷是会丢失所有的监控历史数据 具体清理语句如下: use zabbix; trun…