神经网络参数与TensorFlow变量】的更多相关文章

在TensorFlow中变量的作用是保存和更新神经网络中的参数,需要给变量指定初始值,如下声明一个2x3矩阵变量 weights =tf.Variable(tf.random_normal([2,3], stddev=1)) 在这段代码中tf.random_normal([2,3], stddev=1)会产生一个2x3的矩阵,矩阵中的元素是均值为0,标准差为2的随机数.tf.random_normal()可以通过参数mean来指定平均值,不指定默认0. 函数名称 随机数分布 主要参数 tf.ra…
摘要:这篇文章将讲解TensorFlow如何保存变量和神经网络参数,通过Saver保存神经网络,再通过Restore调用训练好的神经网络. 本文分享自华为云社区<[Python人工智能] 十一.Tensorflow如何保存神经网络参数 丨[百变AI秀]>,作者: eastmount. 一.保存变量 通过tf.Variable()定义权重和偏置变量,然后调用tf.train.Saver()存储变量,将数据保存至本地"my_net/save_net.ckpt"文件中. # -*…
以下仅为了自己方便查看,绝大部分参考来源:莫烦Python,建议去看原博客 一.添加层 def add_layer() 定义 add_layer()函数 在 Tensorflow 里定义一个添加层的函数可以很容易的添加神经层,为之后的添加省下不少时间. 神经层里常见的参数通常有weights.biases和激励函数. 然后定义添加神经层的函数def add_layer(),它有四个参数:输入值.输入的大小.输出的大小和激励函数,我们设定默认的激励函数是None. def add_layer(in…
tensorflow变量: 1.神经网络中的参数权重,偏置等可以作为张量保存到tensorflow的变量中 2.tensorflow变量必须被初始化 3.可被保存到文件中,下次使用重新加载即可 tensorflow说明: tensorflow是一张运算图,用tf.Session运行这张图就得到输出结果 其中这张运算图由节点和带箭头的线组成: 节点表示运算操作,例如+,-等 带箭头的线表示执行运算操作的数据 上图,add表示加法操作,俩个箭头线表示两个相加的数据…
举例说明 TensorFlow中的变量一般就是模型的参数.当模型复杂的时候共享变量会无比复杂. 官网给了一个case,当创建两层卷积的过滤器时,每输入一次图片就会创建一次过滤器对应的变量,但是我们希望所有图片都共享同一过滤器变量,一共有4个变量:conv1_weights,conv1_biases,conv2_weights, and conv2_biases. 通常的做法是将这些变量设置为全局变量.但是存在的问题是打破封装性,这些变量必须文档化被其他代码文件引用,一旦代码变化,调用方也可能需要…
深度学习之卷积神经网络CNN及tensorflow代码实例 什么是卷积? 卷积的定义 从数学上讲,卷积就是一种运算,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分.级数,所以看起来觉得很复杂. 我们称 其连续的定义为: 其离散的定义为: 这两个式子有一个共同的特征: 这个特征有什么意义呢? 我们令,当n变化时,只需要平移这条直线 在上面的公式中,是一个函数,也是一个函数,例如下图所示即 下图即 根据卷积公式,求即将变号为,然后翻转变成,若我们计算的卷积值, 当n=0时: 当n=1时:…
深度学习之卷积神经网络CNN及tensorflow代码实现示例 2017年05月01日 13:28:21 cxmscb 阅读数 151413更多 分类专栏: 机器学习 深度学习 机器学习   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/cxmscb/article/details/71023576 一.CNN的引入 在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连的…
import tensorflow as tf x=tf.Variable([1,2]) a=tf.constant([3,3]) sub=tf.subtract(x,a) #增加一个减法op add=tf.add(x,sub) #增加一个加法op #注意变量再使用之前要再sess中做初始化,但是下边这种初始化方法不会指定变量的初始化顺序 init=tf.global_variables_initializer() with tf.Session() as sess: sess.run(init…
在ModelSim波形图中以参数名显示变量 在使用Verilog HDL编写有限状态机等逻辑的时候,状态机的各个状态通常以参数表示,但当使用ModelSim仿真的时候,状态机变量在wave窗口中以二进制编码的形式显示,例如:4’h0.4’h1等.这种显示形式不是很直观,但我们可以使用ModelSim提供的命令将状态机变量以“文本”形式的参数名显示,从而有利于调试. 假如一个状态机有如下的编码: parameter  WAIT_INPUT1 = 2'b00,  // 状态机参数定义,表示4个状态…
在程序中定义变量很简单,只要定义一个变量名就可以,但是tensorflow有点类似在另外一个世界,因此需要通过当前的世界中跟tensorlfow的世界中进行通讯,来告诉tensorflow的世界中定义了一个变量,这个通讯的空间就是tf类,看个例子就应该能明白: import tensorflow as tf state = tf.Variable(0) print(state.name) 这里定义了一个tensorflow变量,并且设置了一个初始值0,在tensorflow世界中每个变量也有其相…