最近这段时间,学校里的事情实在太多了,从七月下旬一直到八月底实验室里基本天天十二点或者通宵,实在是没有精力和时间来写博客.这周老师出国开会,也算有了一个短暂的休息机会,刚好写点有意思的东西. 上周在天津的会议上碰到一个北交的姐们儿,她想利用小波变换来处理失超信号,刚好之前自己就有这个想法,所以回来后就想着把相关的内容好好复习复习,最相关的就是傅里叶分析和小波变换了.数学推导固然重要,但写那个实在是太乏味了,然后想到之前网上一个新闻,说一个同学通过新闻里记者拨号的声音反推出了周鸿祎的手机号码,就想…
1.傅里叶变换  傅里叶变换是信号领域沟通时域和频域的桥梁,在频域里可以更方便的进行一些分析.傅里叶主要针对的是平稳信号的频率特性分析,简单说就是具有一定周期性的信号,因为傅里叶变换采取的是有限取样的方式,所以对于取样长度和取样对象有着一定的要求. 2.基于Python的频谱分析  将时域信号通过FFT转换为频域信号之后,将其各个频率分量的幅值绘制成图,可以很直观地观察信号的频谱.    具体分析见代码注释. import numpy as np#导入一个数据处理模块 import pylab…
(一)KNN依旧是一种监督学习算法 KNN(K Nearest Neighbors,K近邻 )算法是机器学习全部算法中理论最简单.最好理解的.KNN是一种基于实例的学习,通过计算新数据与训练数据特征值之间的距离,然后选取K(K>=1)个距离近期的邻居进行分类推断(投票法)或者回归.假设K=1.那么新数据被简单分配给其近邻的类.KNN算法算是监督学习还是无监督学习呢?首先来看一下监督学习和无监督学习的定义.对于监督学习.数据都有明白的label(分类针对离散分布,回归针对连续分布),依据机器学习产…
实验设备与软件环境 硬件环境:内存ddr3 4G及以上的x86架构主机一部 系统环境:windows 软件环境:Anaconda2(64位),python3.5,jupyter 内核版本:window10.0 实验内容和原理 (1)实验内容: 使用k近邻算法改进约会网站的配对效果.海伦使用约会网址寻找适合自己的约会对象,约会网站会推荐不同的人选.她将曾经交往过的的人总结为三种类型:不喜欢的人.魅力一般的人.极具魅力的人.尽管发现了这些规律,但依然无法将约会网站提供的人归入恰当的分类.使用KNN算…
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法combine_first()方法:合并重叠数据. pandas.merge()方法:数据库风格的合并   例如,通过merge()方法将两个DataFrame合并: on='name'的意思是将name列当作键: 默认情况下,merge做的是内连接(inner),即键的交集. 其他方式还有左连接(l…
概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为array[index1:index2],意思是从index1索引位置开始,到index2索引(不包括index2)位置结束的一段数组.例如: 当把一个值赋值为一个切片时,该值会作用于此数组片段里每一个元素,例如: 二维数组 二维数组的索引 当以一维数组的索引方式访问一个二维数组的时候,获取的元素不在…
pandas 对象拥有一些常用的数学和统计方法.   例如,sum() 方法,进行列小计:   sum() 方法传入 axis=1 指定为横向汇总,即行小计:   idxmax() 获取最大值对应的索引:   还有一种汇总是累计型的,cumsum(),比较它和 sum() 的区别: unique() 方法用于返回数据里的唯一值:   value_counts() 方法用于统计各值出现的频率:   isin() 方法用于判断成员资格:   安装步骤已经在首篇随笔里写过了,这里不在赘述.利用 Pyt…
一.reindex() 方法:重新索引 针对 Series   重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 fill_value 参数指定填充值. 例如:   fill_value 会让所有的缺失值都填充为同一个值,如果不想这样而是用相邻的元素(左或者右)的值填充,则可以用 method 参数,可选的参数值为 ffill 和 bfill,分别为用前值填充和用后值填充: 针对 DataFrame   重新…
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构:Series 和 DataFrame. 二.Series Series 是一个一维数组对象 ,类似于 NumPy 的一维 array.它除了包含一组数据还包含一组索引,所以可以把它理解为一组带索引的数组. 将 Python 数组转换成 Series 对象: 将 Python 字典转换成 Serie…
一.NumPy 是什么 NumPy 是 Python 科学计算的基础包,它专为进行严格的数字处理而产生.在之前的随笔里已有更加详细的介绍,这里不再赘述. 利用 Python 进行数据分析(一)简单介绍 二.ndarray 是什么 ndarray 是一个多维的数组对象,具有矢量算术运算能力和复杂的广播能力,并具有执行速度快和节省空间的特点. ndarray 的一个特点是同构:即其中所有元素的类型必须相同. 三.ndarray 的创建 array() 函数 最简单的方法, 使用 NumPy 提供的…