svm核函数的理解和选择】的更多相关文章

https://blog.csdn.net/leonis_v/article/details/50688766 特征空间的隐式映射:核函数    咱们首先给出核函数的来头:在上文中,我们已经了解到了SVM处理线性可分的情况,而对于非线性的情况,SVM 的处理方法是选择一个核函数 κ(⋅,⋅) ,通过将数据映射到高维空间,来解决在原始空间中线性不可分的问题. 此外,因为训练样例一般是不会独立出现的,它们总是以成对样例的内积形式出现,而用对偶形式表示学习器的优势在为在该表示中可调参数的个数不依赖输入…
直接conda install libsvm安装的不完整,缺几个.py文件. 第一种安装方法: 下载:http://www.csie.ntu.edu.tw/~cjlin/cgi-bin/libsvm.cgi?+http://www.csie.ntu.edu.tw/~cjlin/libsvm+tar.gz 在/home/common/anaconda3/lib/python3.6/site-packages下创建一个libsvm文件夹,并将libsvm.so.2复制到到libsvm文件夹中(lib…
对SVM的个人理解 之前以为SVM很强大很神秘,自己了解了之后发现原理并不难,不过,“大师的功力在于将idea使用数学定义它,使用物理描述它”,这一点在看SVM的数学部分的时候已经深刻的体会到了,最小二乘法.梯度下降法.拉格朗日乘子.对偶问题等等被搞的焦头烂额.在培乐园听了讲课之后才算比较清晰的了解了整个数学推导的来龙去脉. 1. 为什么一定要研究线性分类? 首先说一下为什么对数据集一定要说线性可分或线性不可分,难道不可以非线性分开吗?想要非线性分开当然可以,实际上SVM只是把原来线性不可分的数…
SVM问题再理解与分析--我的角度 欢迎关注我的博客:http://www.cnblogs.com/xujianqing/ 支持向量机问题 问题先按照几何间隔最大化的原则引出他的问题为 上面的约束条件就是一个不等式约束, 可以写成 这个是SVM的基本型 对它引入拉格朗日乘子,即对上式添加拉格朗日乘子该问题的拉格朗日函数可以写成: 对偶问题 先定义一个概念:Wolfe对偶:定义问题是凸优化问题的对偶 再定义一个概念:约束规格: 考虑一般约束问题 在式(6)的可行域,在这个约束函数都是可微函数,引进…
核函数 在上文中我们已经了解到使用SVM处理线性可分的数据,而对于非线性数据需要引入核函数的概念它通过将数据映射到高维空间来实现线性可分.在线性不可分的情况下,支持向量机通过某种事先选择的非线性映射(核函数)将输入变量映射到一个高维特征空间,在这个空间中构造最优分类超平面.我们使用SVM进行数据集分类工作的过程首先是同预先选定的一些非线性映射将输入空间映射到高维特征空间(下图很清晰的表达了通过映射到高维特征空间,而把平面上本身不好分的非线性数据分了开来) 只要给出φ,计算出φ(x)和φ(z),再…
原文:http://blog.csdn.net/arthur503/article/details/19966891 之前以为SVM很强大很神秘,自己了解了之后发现原理并不难,不过,“大师的功力在于将idea使用数学定义它,使用物理描述它”,这一点在看SVM的数学部分的时候已经深刻的体会到了,最小二乘法.梯度下降法.拉格朗日乘子.对偶问题等等被搞的焦头烂额.在培乐园听了讲课之后才算比较清晰的了解了整个数学推导的来龙去脉. 1. 为什么一定要研究线性分类? 首先说一下为什么对数据集一定要说线性可分…
核函数(Kernels) 定义 1.1 (核或正定核) 设是中的一个子集,称定义在上的函数是核函数,如果存在一个从到Hilbert空间的映射 使得对任意的,都成立.其中表示Hilbert空间中的内积. 在低纬度空间里不可分的问题,我们可以通过将其向高纬度空间转化,使其线性可分.而转换的关键是找到低维空间向高纬的映射方法. 考虑我们最初在“线性回归”中提出的问题,特征是房子的面积x,这里的x是实数,结果y是房子的价格.假设我们从样本点的分布中看到x和y符合3次曲线,那么我们希望使用x的三次多项式来…
知识预备 1. 回顾:logistic回归出发,引出了SVM,即支持向量机[续]. 2.  Mercer定理:如果函数K是上的映射(也就是从两个n维向量映射到实数域).那么如果K是一个有效核函数(也称为Mercer核函数),那么当且仅当对于训练样例,其相应的核函数矩阵是对称半正定的. 核函数描述和分析 考虑在” 回归和梯度下降 “一节的“线性回归”中提出的问题,特征是房子的面积x,这里的x是实数,结果y是房子的价格.假设我们从样本点的分布中看到x和y符合3次曲线,那么我们希望使用x的三次多项式来…
SVM分类器里面的东西好多呀,碾压前两个.怪不得称之为深度学习出现之前表现最好的算法. 今天学到的也应该只是冰山一角,懂了SVM的一些原理.还得继续深入学习理解呢. 一些关键词: 超平面(hyper plane)SVM的目标就是找到一个超平面把两类数据分开.使边际(margin)最大.如果把超平面定义为w*x+b=0.那么超平面距离任意一个支持向量的距离就是1/||w||.(||w||是w的范数,也就是√w*w’) SVM就是解决 这个优化问题.再经过拉格朗日公式和KKT条件等数学运算求解得到一…
核函数的起源是对于线性不可分的分类情况,其实可以通过p次方多项式,及非线性模型进行分类:然后对于这类非线性多次方的,其实可以按照广义线性模型来进行升维变形,使之成为线性模型,这样就可以放到SVM中来进行处理了(svm只能处理非线性模型). 但是升维之后是有维度爆炸现象的(二次方对应6维度,三次方对应19维度),为了解决这个问题,核函数出场了,简单讲核函数就是计算计算是在低维进行,但是形式却是映射到高维. SVM的优化目标: 假设xi和xj都是低维非线性的函数,我们定义映射到高维的函数为φ(x),…