117、TensorFlow变量共享】的更多相关文章

上次说到了 TensorFlow 从文件读取数据,这次我们来谈一谈变量共享的问题. 为什么要共享变量?我举个简单的例子:例如,当我们研究生成对抗网络GAN的时候,判别器的任务是,如果接收到的是生成器生成的图像,判别器就尝试优化自己的网络结构来使自己输出0,如果接收到的是来自真实数据的图像,那么就尝试优化自己的网络结构来使自己输出1.也就是说,生成图像和真实图像经过判别器的时候,要共享同一套变量,所以TensorFlow引入了变量共享机制. 变量共享主要涉及到两个函数: tf.get_variab…
# sharing variables # Tensorflow supports two ways of sharing variables # 1.Explicitly passing tf.Variable objects around # 2.Implicitly wrapping tf.Variable objects within tf.variable_scope objects # For example , let's write a function to create a…
import tensorflow as tf # 在不同的变量域中调用conv_relu,并且声明我们想创建新的变量 def my_image_filter(input_images): with tf.variable_scope("conv1"): # Variables created here will be named "conv1/weights" ,"conv1/biases" relu1 = conv_relu(input_im…
https://github.com/chenghuige/tensorflow-exp/blob/master/examples/sparse-tensor-classification/ tensorflow-exp/example/sparse-tensor-classification/train-validate.py 当你需要train的过程中validate的时候,如果用placeholder来接收输入数据 那么一个compute graph可以完成这个任务.如果你用的是TFRec…
因为最近在研究生成对抗网络GAN,在读别人的代码时发现了 with tf.variable_scope(self.name_scope_conv, reuse = reuse): 这样一条语句,查阅官方文档时明白了这是TensorFlow的变量共享机制. 举个例子:当我们研究生成对抗网络GAN的时候,判别器的任务是,如果接收到的是生成器生成的图像,判别器就尝试优化自己的网络结构来使自己输出0,如果接收到的是来自真实数据的图像,那么就尝试优化自己的网络结构来使自己输出1.也就是说,生成图像和真实图…
因为最近在研究生成对抗网络GAN,在读别人的代码时发现了 with tf.variable_scope(self.name_scope_conv, reuse = reuse): 这样一条语句,查阅官方文档时明白了这是TensorFlow的变量共享机制. 举个例子:当我们研究生成对抗网络GAN的时候,判别器的任务是,如果接收到的是生成器生成的图像,判别器就尝试优化自己的网络结构来使自己输出0,如果接收到的是来自真实数据的图像,那么就尝试优化自己的网络结构来使自己输出1.也就是说,生成图像和真实图…
如何在Exe和BPL插件中实现公共变量共享及窗口溶入技术Demo源码 1.Delphi编译方式介绍: 当我们在开发一个常规应用程序时,Delphi可以让我们用两种方式使用VCL,一种是把VCL中的申明单元及实现单元全部以静态编译的方式编译并链接进Exe可执行文件中,这样做的好处就是发布程序时只需要发布独立的可执行文件,当我们使用了的第三方DLL.OCX等时,无需发布*.bpl等文件,但EXE程序文件的体积会较大. 另外一种是把VCL库以运行时状态(即把VCL库中的申请单元静态编译进EXE可执行文…
在程序中定义变量很简单,只要定义一个变量名就可以,但是tensorflow有点类似在另外一个世界,因此需要通过当前的世界中跟tensorlfow的世界中进行通讯,来告诉tensorflow的世界中定义了一个变量,这个通讯的空间就是tf类,看个例子就应该能明白: import tensorflow as tf state = tf.Variable(0) print(state.name) 这里定义了一个tensorflow变量,并且设置了一个初始值0,在tensorflow世界中每个变量也有其相…
tensorflow变量: 1.神经网络中的参数权重,偏置等可以作为张量保存到tensorflow的变量中 2.tensorflow变量必须被初始化 3.可被保存到文件中,下次使用重新加载即可 tensorflow说明: tensorflow是一张运算图,用tf.Session运行这张图就得到输出结果 其中这张运算图由节点和带箭头的线组成: 节点表示运算操作,例如+,-等 带箭头的线表示执行运算操作的数据 上图,add表示加法操作,俩个箭头线表示两个相加的数据…
共享内存极少使用,所以这里我们仅作了解. .将几个变量放在相同的内存区,但其中只有一个变量在给定时刻有有效值. .程序处理许多不同类型的数据,但是一次只处理一种.要处理的类型在执行期间才能确定. .在不同的时间访问相同的数据,但在不同的情况下该数据的类型是不同的. 定义联合类型 联合的定义及成员的引用和结构极为类似 在C语言中多个不同变量共享同一内存区的功能称为联合(union),声明联合的语法类似结构 union test { int i; int j; int k; }t1; t1.i; p…