Soldier and Number Game-素数筛】的更多相关文章

D. Soldier and Number Game time limit per test 3 seconds memory limit per test 256 megabytes input standard input output standard output Two soldiers are playing a game. At the beginning first of them chooses a positive integer n and gives it to the…
Nico Number Time Limit: 2 Seconds      Memory Limit: 262144 KB Kousaka Honoka and Minami Kotori are playing a game about a secret of Yazawa Nico. When the game starts, Kousaka Honoka will give Minami Kotori an array A of N non-negative integers. Ther…
Two soldiers are playing a game. At the beginning first of them chooses a positive integer n and gives it to the second soldier. Then the second one tries to make maximum possible number of rounds. Each round consists of choosing a positive integer x…
题目描述: Soldier and Number Game time limit per test 3 seconds memory limit per test 256 megabytes input standard input output standard output Two soldiers are playing a game. At the beginning first of them chooses a positive integer n and gives it to t…
题意: 输入 a 和 b(a>b),求a! / b!的结果最多能被第二个士兵给的数字除多少次. 思路: a! / b!肯定能把b!约分掉,只留下b+1~a的数字相乘,所以我们求b+1 ~ a的所有数字的素因子数的和.所以最主要是想一个快速求素因子的方法,在素数筛的基础上改造. for(int i=2; i<N; i++) if(!su[i]) { for(int j=i; j<N; j+=i)//素数筛的基础找到i为素数 { su[j]=1; t=j; while(t%i==0)//对这…
D. Soldier and Number Game time limit per test3 seconds memory limit per test256 megabytes inputstandard input outputstandard output Two soldiers are playing a game. At the beginning first of them chooses a positive integer n and gives it to the seco…
Help Hanzo 题意:求a~b间素数个数(1 ≤ a ≤ b < 231, b - a ≤ 100000).     (全题在文末) 题解: a~b枚举必定TLE,普通打表MLE,真是头疼.. b - a ≤ 100000 是关键. 类似素数筛的方法: 1.初始化vis[]=0 ; 2.素数的倍数vis[]=1; 3.  b较小时,素数筛解决   b很大时,素数筛的vis[]会MLE,此时用vis2[i-a]保存vis[i]就不会MLE 了.. #include<iostream>…
Fermat's Chirstmas Theorem Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描写叙述 In a letter dated December 25, 1640; the great mathematician Pierre de Fermat wrote to Marin Mersenne that he just proved that an odd prime p is expressible as p…
Some positive integers can be represented by a sum of one or more consecutive prime numbers. How many such representations does a given positive integer have? For example, the integer 53 has two representations 5 + 7 + 11 + 13 + 17 and 53. The intege…
Xiaoming has just come up with a new way for encryption, by calculating the key from a publicly viewable number in the following way: Let the public key N = A B, where 1 <= A, B <= 1000000, and a 0, a 1, a 2, …, a k-1 be the factors of N, then the p…