LR梯度下降法MSE演练】的更多相关文章

pytorch随机梯度下降法1.梯度.偏微分以及梯度的区别和联系(1)导数是指一元函数对于自变量求导得到的数值,它是一个标量,反映了函数的变化趋势:(2)偏微分是多元函数对各个自变量求导得到的,它反映的是多元函数在各个自变量方向上的变化趋势,也是标量:(3)梯度是一个矢量,是有大小和方向的,其方向是指多元函数增大的方向,而大小是指增长的趋势快慢. 2.在寻找函数的最小值的时候可以利用梯度下降法来进行寻找,一般会出现以下两个问题局部最优解和铵点(不同自变量的变化趋势相反,一个处于极小,一个处于极大…
原文地址:传送门 import numpy as np import matplotlib.pyplot as plt %matplotlib inline plt.style.use(['ggplot']) 当你初次涉足机器学习时,你学习的第一个基本算法就是 梯度下降 (Gradient Descent), 可以说梯度下降法是机器学习算法的支柱. 在这篇文章中,我尝试使用 p y t h o n python python 解释梯度下降法的基本原理.一旦掌握了梯度下降法,很多问题就会变得容易理…
前阵子听说一个面试题:你实现一个logistic Regression需要多少分钟?搞数据挖掘的人都会觉得实现这个简单的分类器分分钟就搞定了吧? 因为我做数据挖掘的时候,从来都是顺手用用工具的,尤其是微软内部的TLC相当强大,各种机器学习的算法都有,于是自从离开学校后就没有自己实现过这些基础的算法.当有一天心血来潮自己实现一个logistic regression的时候,我会说用了3个小时么?...羞羞 ----------------------------------------------…
梯度下降法 不是一个机器学习算法 是一种基于搜索的最优化方法 作用:最小化一个损失函数 梯度上升法:最大化一个效用函数 举个栗子 直线方程:导数代表斜率 曲线方程:导数代表切线斜率 导数可以代表方向,对应J增大的方向.对于蓝点,斜率为负,西塔减少时J增加,西塔增加时J减少,我们想让J减小,对应导数的负方向,因此前面需要加上负号. (伊塔对应步长)-------(1) 用当前点的西塔加上(1)式,得到新的西塔.因为导数是负值,前面又有负号,所以整个是正值,加上一个正值对应西塔在增大. 多维函数中,…
We turn next to the task of finding a weight vector w which minimizes the chosen function E(w). Because there is clearly no hope of finding an anlytical solution to the equation ∂E(w)=0, we resort to iterative numerical procedures. On-line gradient d…
梯度下降法及一元线性回归的python实现 一.梯度下降法形象解释 设想我们处在一座山的半山腰的位置,现在我们需要找到一条最快的下山路径,请问应该怎么走?根据生活经验,我们会用一种十分贪心的策略,即在现在所处的位置上找到一个能够保证我们下山最快的方向,然后向着该方向行走:每到一个新位置,重复地应用上述贪心策略,我们就可以顺利到达山底了.其实梯度下降法的运行过程和上述下山的例子没有什么区别,不同的是我们人类可以凭借我们的感官直觉,根据所处的位置来选择最佳的行走方向,而梯度下降法所依据的是严格的数学…
在<机器学习---线性回归(Machine Learning Linear Regression)>一文中,我们主要介绍了最小二乘线性回归算法以及简单地介绍了梯度下降法.现在,让我们来实践一下吧. 先来回顾一下用最小二乘法求解参数的公式:. (其中:,,) 再来看一下随机梯度下降法(Stochastic Gradient Descent)的算法步骤: 除了算法中所需的超参数α(学习速率,代码中写为lr)和epsilon(误差值),我们增加了另一个超参数epoch(迭代次数).此外,为方便起见,…
optim.SDG 或者其他.实现随机梯度下降法 待办 实现随机梯度下降算法的参数优化方式 另外还有class torch.optim.ASGD(params, lr=0.01, lambd=0.0001, alpha=0.75, t0=1000000.0, weight_decay=0)[source] 实现平均随机梯度下降算法.…
在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练.其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点. 下面我们以线性回归算法来对三种梯度下降法进行比较. 一般线性回归函数的假设函数为: $h_{\theta}=\sum_{j=0}^{n}\theta_{j}x_{j}$ 对应的能量函数(损失函数)形式为: $J_{train}(\theta)=1/(2m)\sum_{i=1}^{m}(h_{\theta}(x^{(i)})-y^{(i)})^{2}$…
机器学习基础--梯度下降法(Gradient Descent) 看了coursea的机器学习课,知道了梯度下降法.一开始只是对其做了下简单的了解.随着内容的深入,发现梯度下降法在很多算法中都用的到,除了之前看到的用来处理线性模型,还有BP神经网络等.于是就有了这篇文章. 本文主要讲了梯度下降法的两种迭代思路,随机梯度下降(Stochastic gradient descent)和批量梯度下降(Batch gradient descent).以及他们在python中的实现. 梯度下降法 梯度下降是…