Pytorch-tensor的分割,属性统计】的更多相关文章

Object Detection and Classification using R-CNNs 目标检测:数据增强(Numpy+Pytorch) - 主要探究检测分割模型数据增强操作有哪些? - 检测分割模型图像输入大小?检测模型Faster rcnn输入较大800+:而ssd则有300,512之分:分割模型一般deeplab使用321,513,769等:输入大小对结果敏感吗? - 检测分割模型的batch-szie都比较小:这对显存消耗很大,和输入大小的关系?本身分割模型deeplab系列就…
https://pytorch.org/docs/stable/tensors.html dtype: tessor的数据类型,总共有8种数据类型,其中默认的类型是torch.FloatTensor,而且这种类型的别名也可以写作torch.Tensor. device: 这个参数表示了tensor将会在哪个设备上分配内存.它包含了设备的类型(cpu.cuda)和可选设备序号.如果这个值是缺省的,那么默认为当前的活动设备类型. require_grad: 这个标志表明这个tensor的操作是否会被…
cat label_movie2|grep BBD252CC0A4FE7D10C990261D5CEACB5|awk -F "," '{for(i=2;i<NF;i++) print $i}'|wc -l 在label_movie2文件中按照某个ID查找,然后按照分隔符“,”分割,最后统计结果 cat label_movie2|awk '$1 ~/^BBD/'| 查找文件开头以BBD字母为首的字段. mongodb result集合查询:db.getCollection('lab…
第一讲先从一个实例开始——我们需要完成一个遍历文件并统计单词出现次数的任务.分解功能:首先,按行读取文件并舍弃可能的空行.其次,将每一行都按照空格划分单词.因为可能存在标点符号,我们还需要将标点符号都删除.最后把行首或专有名词中出现的大写字母统一转换.最后将所有获取的字母放到一个关联容器中(map<string, int>)统计出现的次数. 一.从文件中读取并按行分割 (1)标准方法与参数 std::getline(basic_istream<charT,traits>&…
2018.4.25,Facebook 推出了 PyTorch 0.4.0 版本,在该版本及之后的版本中,torch.autograd.Variable 和 torch.Tensor 同属一类.更确切地说,torch.Tensor 能够追踪日志并像旧版本的 Variable 那样运行; Variable 封装仍旧可以像以前一样工作,但返回的对象类型是 torch.Tensor.这意味着我们的代码不再需要变量封装器. 相关链接: PyTorch 重磅更新,不只是支持 Windows PyTorch简…
维度扩展 x.unsqueeze(n) 在 n 号位置添加一个维度 例子: import torch x = torch.rand(3,2) x1 = x.unsqueeze(0) # 在第一维的位置添加一个维度 x2 = x.unsqueeze(1) # 在第二维的位置添加一个维度 x3 = x.unsqueeze(2) # 在第三维的位置添加一个维度 print(x1.shape) print(x2.shape) print(x3.shape) >> torch.Size([1, 3, 2…
从官网拷贝过来的,就是做个学习记录.版本 0.4 tensor to numpy a = torch.ones(5) print(a) 输出 tensor([1., 1., 1., 1., 1.]) 进行转换 b = a.numpy() print(b) 输出 [1. 1. 1. 1. 1.] 注意,转换后的tensor与numpy指向同一地址,所以,对一方的值改变另一方也随之改变 a.add_(1) print(a) print(b) numpy to tensor import numpy…
torch.randn torch.randn(*sizes, out=None) → Tensor(张量) 返回一个张量,包含了从标准正态分布(均值为0,方差为 1)中抽取一组随机数,形状由可变参数sizes定义. 参数: sizes (int...) – 整数序列,定义了输出形状 out (Tensor, optinal) - 结果张量 二维 >>> import torch >>> torch.randn(2,3) tensor([[-1.0413, 0.8792…
切片方式与numpy是类似. * a[:2, :1, :, :], * 可以用-1索引. * ::2,表示所有数据,间隔为2,即 start:end:step. *  a.index_select(1,torch.tensor([2])) # 1表示维度,后面是索引(必须是tensor格式,想连续选取可以用tensor.arange()) * 三个点(...): 表示取最大维度的数据,不用输入很多的(:,:,) 比如下面的数据三个点...可以代替中间的维度,并且两边数据是相等的: * torch…
Numpy与Tensor是PyTorch的重要内容 Numpy的使用 Numpy是Python中科学计算的一个基础包,提供了一个多维度的数组对象,数组是由numpy.ndarray类来实现的,是Numpy的核心数据结构,其索引从0开始,和Python列表不同的是,Numpy没办法动态地改变,创建时就具有固定的大小,如果改变Numpy数组的长度,会创建一个新的数组并且删除原数组,并且数组中的数据类型必须是一样的,但消耗的内存更少,运行速度更快 创建数组 将一个任意维度的列表传入np.array()…