首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
serving inference
】的更多相关文章
serving inference
1.确定要提供服务的inference的input,output,以及exporter的signature:(这里用classify的signature做例子,input为byte数组,output为float数组) 2.编写proto文件 syntax = "proto3"; option java_package = "com.lenovo.tensorflow"; option java_outer_classname = "Se…
4 个场景揭秘,如何低成本让容器化应用 Serverless 化?
作者 | changshuai FaaS 的门槛 Serverless 形态的云服务帮助开发者承担了大量复杂的扩缩容.运维.容量规划.云产品打通集成等责任,使得开发者可以专注业务逻辑.提高交付速度 (Time-to-market) ,持续优化成本.Function-as-a-Service (FaaS) 作为云上最早也是应用最广泛的 Serverless 计算形态,在几年的时间内吸引了大批开发者,逐渐建立了 Serverless 优先的选型逻辑.然而从传统应用迁移到 FaaS 在开发者体验上还面…
阿里云函数计算发布新功能,支持容器镜像,加速应用 Serverless 进程
我们先通过一段视频来看看函数计算和容器相结合后,在视频转码场景下的优秀表现.点击观看视频 >> FaaS 的门槛 Serverless 形态的云服务帮助开发者承担了大量复杂的扩缩容.运维.容量规划.云产品打通集成等责任,使得开发者可以专注业务逻辑.提高交付速度 (Time-to-market) ,持续优化成本.Function-as-a-Service (FaaS) 作为云上最早也是应用最广泛的 Serverless 计算形态,在几年的时间内吸引了大批开发者,逐渐建立了 Serverless…
tensorflow serving
1.安装tensorflow serving 1.1确保当前环境已经安装并可运行tensorflow 从github上下载源码 git clone --recurse-submodules https://github.com/tensorflow/serving 进入到serving目录下的tensorflow运行./configure,并安装步骤完成(需将 2问题解决的的步骤全操作完后执行安装步骤) 1.2.编译example代码 bazel build tensorflow_serving…
TensorFlow Serving简介
一.TensorFlow Serving简介 TensorFlow Serving是GOOGLE开源的一个服务系统,适用于部署机器学习模型,灵活.性能高.可用于生产环境. TensorFlow Serving可以轻松部署新算法和实验,同时保持相同的服务器架构和API,它具有以下特性: 支持模型版本控制和回滚 支持并发,实现高吞吐量 开箱即用,并且可定制化 支持多模型服务 支持批处理 支持热更新 支持分布式模型 易于使用的inference api 为gRPC expose port 8500,为…
Paddle Inference推理部署
Paddle Inference推理部署 飞桨(PaddlePaddle)是集深度学习核心框架.工具组件和服务平台为一体的技术先进.功能完备的开源深度学习平台,已被中国企业广泛使用,深度契合企业应用需求,拥有活跃的开发者社区生态.提供丰富的官方支持模型集合,并推出全类型的高性能部署和集成方案供开发者使用. 技术优势 开发便捷的深度学习框架 飞桨深度学习框架基于编程一致的深度学习计算抽象以及对应的前后端设计,拥有易学易用的前端编程界面和统一高效的内部核心架构,对普通开发者而言更容易上手并具备领先的…
服务化部署框架Paddle Serving
服务化部署框架Paddle Serving 概述 常见的深度学习模型开发流程需要经过问题定义.数据准备.特征提取.建模.训练过程,以及最后一个环--将训练出来的模型部署应用到实际业务中.如图1所示,当前用户在训练出一个可用的模型后,可以选择如下四种部署应用方式: 服务器端高性能部署:将模型部署在服务器上,利用服务器的高性能帮助用户处理推理业务. 模型服务化部署:将模型以线上服务的形式部署在服务器或者云端,用户通过客户端,请求发送需要推理的输入内容,服务器或者云通过响应报文将推理结果返回给用户.…
Paddle Inference原生推理库
Paddle Inference原生推理库 深度学习一般分为训练和推理两个部分,训练是神经网络"学习"的过程,主要关注如何搜索和求解模型参数,发现训练数据中的规律,生成模型.有了训练好的模型,就要在线上环境中应用模型,实现对未知数据做出推理,这个过程在AI领域叫做推理部署.用户可以选择如下四种部署应用方式之一: 服务器端高性能部署:将模型部署在服务器上,利用服务器的高性能帮助用户处理推理业务. 模型服务化部署:将模型以线上服务的形式部署在服务器或者云端,用户通过客户端请求发送需要推理的…
Tensorflow serving的编译
Tensorflow serving提供了部署tensorflow生成的模型给线上服务的方法,包括模型的export,load等等. 安装参考这个 https://github.com/tensorflow/serving/blob/master/tensorflow_serving/g3doc/setup.md 但是由于被qiang的问题 (googlesource无法访问) https://github.com/tensorflow/serving/issues/6 需要修改一下 WORKS…
springboot Serving Web Content with Spring MVC
Serving Web Content with Spring MVC This guide walks you through the process of creating a "hello world" web site with Spring. What you'll build You'll build an application that has a static home page, and also will accept HTTP GET requests at:…