Speed Up Tracking by Ignoring Features CVPR 2014 Abstract:本文提出一种特征选择的算法,来实现用最"精简"的特征以进行目标跟踪.重点是提出一种上界 (Upper Bound)来表示一块区域包含目标物体的概率,并且忽略掉这个 bound比较小的区域.我们的实验表明,忽略掉 90%的特征,仍然取得了不错的结果(未损失精度). Ignoring Features in Tracking .  基于滑动窗口的跟踪器,计算大量的 bound…
论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做是一个 黑匣子,只是用来提取特征,而是在大量的图像和 ImageNet 分类任务上关于 CNN 的 feature 做了大量的深度的研究.这些发现促使他们设计了该跟踪系统,他们发现: 不同的卷积层会从不同的角度来刻画目标.顶层的 layer 编码了更多的关于 语义特征并且可以作为种类检测器,而底层的…
Deep Attentive Tracking via Reciprocative Learning NIPS18_tracking Type:Tracking-By-Detection 本篇论文地主要创新是在将注意机制引入到目标跟踪 摘要:源自认知神经科学地视觉注意促进人类对相关的内容的感知.近些年大量工作将注意机制引入到计算机视觉系统中.对于视觉跟踪来说,面临的最大问题在于目标外表的大尺度变化.自注图通过选择性关注临时的鲁棒特征提升视觉跟踪的性能.当前的一些检测跟踪算法主要使用额外的自注模型…
ATOM: Accurate Tracking by Overlap Maximization  2019-03-12 23:48:42  Paper:https://arxiv.org/pdf/1811.07628 Code: https://github.com/visionml/pytracking 1. Background and Motivation:  这篇文章的主要动机是从改善重合度的角度,来提升跟踪的总体性能.因为现有的算法,大部分都在强调,怎么做才能跟的上,而很少有人专门研究…
Visual Object Tracking based on Adaptive Siamese and Motion Estimation 本文提出一种利用上一帧目标位置坐标,在本帧中找出目标可能出现的位置的网路--motion estimation network (named MEN)  .在产生候选位置时,本文从两个可能的坐标下手,采用高斯分布产生很多候选框.然后将候选框送进Siamese Network进行相似性对比. 作者选用最近几帧的目标作为匹配对象(Buffer),提升鲁棒性.…
[论文信息] <Feedforward semantic segmentation with zoom-out features> CVPR 2015 superpixel-level,fully supervised,CNN [方法简单介绍] 首先对输入图像以superpixel为单位提取CNN特征(使用VGG16),然后把这些特征作为CNN classifier(使用imageNet)的输入,imageNet输出是每一个superpixel的class. [细节记录] feature 特征…
论文笔记: Dual Deep Network for Visual Tracking  2017-10-17 21:57:08  先来看文章的流程吧 ... 可以看到,作者所总结的三个点在于: 1. 文章将 边界和形状信息结合到深度网络中.底层 feature 和 高层 feature 结合起来,得到 coarse prior map,然后用 ICA-R model 得到更加显著的物体轮廓,以得到更好的似然性模型: 2. Dual network 分别处理两路不同的网络,使得前景和背景更加具有…
论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning  2017-06-06  21:43:53  这篇文章的 Motivation 来自于 MDNet: 本文所提出的 framework 为:…
Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪,算是单目标跟踪中比较早的应用强化学习算法的一个工作.  在基于深度学习的方法中,想学习一个较好的 robust spatial and temporal representation for continuous video data 是非常困难的.  尽管最近的 CNN based tracke…
Twitter 新一代流处理利器--Heron 论文笔记之Heron架构 标签(空格分隔): Streaming-process realtime-process Heron Architecture Heron 架构例如以下图: 用户编写公布topoloy到Aurora调度器.每个topology都作为一个Aurora的job在执行.每个job包含几个container,这些container由Aurora来分配和调度.第一个container作为Topology Master.其它的Cont…