OpenCV学习笔记(十一) 轮廓操作】的更多相关文章

一.安装MySQL-python # yum install -y MySQL-python 二.打开数据库连接 #!/usr/bin/python import MySQLdb conn = MySQLdb.connect(user='root',passwd='admin',host='127.0.0.1') conn.select_db('test') cur = conn.cursor() 三.操作数据库 def insertdb(): sql = 'insert into test(n…
提取一些经常使用的对象特征 1.长宽比 边界矩形的宽高比                                       x,y,w,h = cv2.boundingRect(cnt) aspect_ratio = floart(w)/h 2.Extent 轮廓面积与边界矩形面积的比. area = cv2.contourArea(cnt) x,y,w,h = cv2.boundingRect(cnt) rect_area = w*h extent = float(area)/rec…
代码: #include<cv.h> #include<highgui.h> int main(void) { cvNamedWindow("cmp"); IplImage *temp = cvLoadImage("sample.jpg");//载入 IplImage *src = cvCreateImage(CvSize(temp->width*0.5,temp->height*0.5), temp->depth,temp…
一,简介: 基于OpenCL优化的代码.…
opencv学习笔记(二)寻找轮廓 opencv中使用findContours函数来查找轮廓,这个函数的原型为: void findContours(InputOutputArray image, OutputArrayOfArrays contours, OutputArray hierar- chy, int mode, int method, Point offset=Point()) /* 参数说明: image:输入图像image必须为一个2值单通道图像: contours:为检测的轮…
本节代码使用的opencv-python 4.0.1,numpy 1.15.4 + mkl 使用图片为 Mjolnir_Round_Car_Magnet_300x300.jpg 代码如下: import cv2 import numpy as np # img = cv2.imread('lightning.jpg',0) img = cv2.imread('Mjolnir.jpg',cv2.IMREAD_UNCHANGED) # img = cv2.pyrUp(img) img_gray =…
凸形状内部的任意两点的连线都应该在形状里面. 1 道格拉斯-普克算法 Douglas-Peucker algorithm 这个算法在其他文章中讲述的非常详细,此处就详细撰述. 下图是引用维基百科的.ε称之为阈值 shreshold 图一 静态图如下: 具体详细的可以参考如下两篇文章. 相关文章如下: 道格拉斯-普克 抽稀算法 附javascript实现,该文章只看他的文字讲解就好,他的代码不是通过python实现的. 道格拉斯-普克算法(Douglas–Peucker algorithm),该文…
opencv-python   4.0.1 1 函数释义 词义:发现轮廓! 从二进制图像中查找轮廓(Finds contours in a binary image):轮廓是形状分析和物体检测和识别的有用工具. findContours(image, mode, method[, contours[, hierarchy[, offset]]]) -> contours, hierarchy 参数 image - 一个8位单通道二值图像(非0即1).非零像素视为1.零像素依然为0, 因此图像被视…
1 不同色彩空间的转换 opencv 中有数百种关于不同色彩空间的转换方法,但常用的有三种色彩空间:灰度.BRG.HSV(Hue-Saturation-Value) 灰度 - 灰度色彩空间是通过去除彩色信息来将其转换成灰阶,灰度色彩空间对中间处理特别有效,比如人脸检测 BGR - 蓝-绿-红 彩色空间,每个像素点都由一个三元数组来表示,分别代表蓝-绿-红三种颜色. HSV,Hue 表示色调,Saturation 表示饱和度,Value 表示黑暗的程度. 2 傅里叶变换 傅里叶变换的概念是许多常见…
OpenCV学习笔记3 图像平滑(低通滤波) 使用低通滤波器可以达到图像模糊的目的.这对与去除噪音很有帮助.其实就是去除图像中的高频成分(比如:噪音,边界).所以边界也会被模糊一点.(当然,也有一些模糊技术不会模糊掉边界).OpenCV 提供了四种模糊技术. 2D 卷积 对 2D 图像实施低通滤波(LPF:low pass filter),高通滤波(HPF:high pass filter)等.LPF 帮助我们去除噪音,模糊图像.HPF 帮助我们找到图像的边缘OpenCV 提供的函数 cv.fi…