本文介绍以下几个CNN经典模型:Lenet(1986年).Alexnet(2012年).GoogleNet(2014年).VGG(2014年).Deep Residual Learning(2015年) 1.LeNet-5 Lenet-5是一个经典的CNN网络模型,几乎所有讲CNN的资料都会提到该模型:该模型是为了识别手写字体和计算机打印字符而设计的, 而且该模型确实在手写体识别领域非常成功,曾被广泛应用于美国银行支票手写体识别. 具体的论文和例子可以参考:http://yann.lecun.c…
https://blog.csdn.net/saw009/article/details/80590245 关于LeNet-5卷积神经网络 S2层与C3层连接的参数计算的思考??? 首先图1是LeNet-5的整体网络结构图 图1 LeNet-5结构 该神经网络共有7层(不计输入层),输入图像大小为32×32. 层编号特点:英文字母+数字 英文字母代表以下一种: C→卷积层.S→下采样层(池化).F→全连接层 数字代表当前是第几层,而非第几卷积层(池化层.ec) 术语解释:参数→权重w与偏置b 连…
一 实例探索 上一节我们介绍了卷积神经网络的基本构建,比如卷积层.池化层以及全连接层这些组件.事实上,过去几年计算机视觉研究中的大量研究都集中在如何把这些基本构件组合起来,形成有效的卷积神经网络.最直观的方式之一就是去看一些案例,就像很多人通过看别人的代码来学习编程一样,通过研究别人构建有效组件的案例是个不错的办法.实际上在计算机视觉任务中表现良好的神经网络框架往往也适用于其它任务,也许你的任务也不例外.也就是说,如果有人已经训练或者计算出擅长识别猫.狗.人的神经网络或者神经网络框架,而你的计算…
4.2深度卷积网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 [LeNet]--Lécun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. [AlexNet]--Krizhevsky A, Sutskever I, Hinton G E. Ima…
content 概述 文字识别系统LeNet-5 简化的LeNet-5系统 卷积神经网络的实现问题 深度神经网路已经在语音识别,图像识别等领域取得前所未有的成功.本人在多年之前也曾接触过神经网络.本系列文章主要记录自己对深度神经网络的一些学习心得. 第二篇,讲讲经典的卷积神经网络.我不打算详细描述卷积神经网络的生物学运行机理,因为网络上有太多的教程可以参考.这里,主要描述其数学上的计算过程,也就是如何自己编程去实现的问题. 1. 概述 回想一下BP神经网络.BP网络每一层节点是一个线性的一维排列…
经典网络 LeNet-5 AlexNet VGG Ng介绍了上述三个在计算机视觉中的经典网络.网络深度逐渐增加,训练的参数数量也骤增.AlexNet大约6000万参数,VGG大约上亿参数. 从中我们可以学习到随着网络深度增加,模型的效果能够提升.另外,VGG网络虽然很深,但是其结构比较规整.每经过一次池化层(过滤器大小为2,步长为2),图像的长度和宽度折半:每经过一次卷积层,输出数据的channel数量加倍,即卷积层中过滤器(filter)的数量. 残差网络(ResNet) 由于存在梯度消失与梯…
前言,好久不见,大家有没有想我啊.哈哈.今天我们来随便说说卷积神经网络. 1卷积神经网络的优点 卷积神经网络进行图像分类是深度学习关于图像处理的一个应用,卷积神经网络的优点是能够直接与图像像素进行卷积,从图像像素中提取图像特征,这种处理方式更加接近人类大脑视觉系统的处理方式.另外,卷积神经网络的权值共享属性和pooling层使网络需要训练的参数大大减小,简化了网络模型,提高了训练的效率. 2 卷积神经网络的架构 卷积神经网络与原始神经网络有什么区别呢,现在我分别给他们的架构图. 图 1 普通深度…
译者注:本文翻译自斯坦福CS231n课程笔记ConvNet notes,由课程教师Andrej Karpathy授权进行翻译.本篇教程由杜客和猴子翻译完成,堃堃和李艺颖进行校对修改. 原文如下 内容列表: 结构概述 用来构建卷积神经网络的各种层 卷积层 汇聚层 归一化层 全连接层 将全连接层转化成卷积层 卷积神经网络的结构 层的排列规律 层的尺寸设置规律 案例学习(LeNet / AlexNet / ZFNet / GoogLeNet / VGGNet) 计算上的考量 拓展资源 卷积神经网络(C…
较好的讲解博客: 卷积神经网络基础 深度卷积模型 目标检测 人脸识别与神经风格迁移 译者注:本文翻译自斯坦福CS231n课程笔记ConvNet notes,由课程教师Andrej Karpathy授权进行翻译.本篇教程由杜客和猴子翻译完成,堃堃和李艺颖进行校对修改. 原文如下 内容列表: 结构概述 用来构建卷积神经网络的各种层 卷积层 汇聚层 归一化层 全连接层 将全连接层转化成卷积层 卷积神经网络的结构 层的排列规律 层的尺寸设置规律 案例学习(LeNet / AlexNet / ZFNet…
近期一直在看卷积神经网络,想改进改进弄出点新东西来.看了好多论文,写了一篇综述.对深度学习中卷积神经网络有了一些新认识,和大家分享下. 事实上卷积神经网络并非一项新兴的算法.早在上世纪八十年代就已经被提出来,但当时硬件运算能力有限,所以当时仅仅用来识别支票上的手写体数字,而且应用于实际. 2006年深度学习的泰斗在<科学>上发表一篇文章,论证了深度结构在特征提取问题上的潜在实力.从而掀起了深度结构研究的浪潮,卷积神经网络作为一种已经存在的.有一定应用经验的深度结构.又一次回到人们视线,此时硬件…